

Agilent U8903A Audio Analyzer

Programmer's Reference

Notices

© Agilent Technologies, Inc. 2009-2013

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

U8903-90027

Edition

Ninth Edition, May 22, 2013

Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051 USA

Warranty

The material contained in this document is provided "as is," and is subject to change, without notice, in future editions. Further, to the maximum extent permitted by the applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

U.S. Government Restricted Rights. Software and technical data rights granted to the federal government include only those rights customarily provided to end user customers. Agilent provides this customary commercial license in Software and technical data pursuant to FAR 12.211 (Technical Data) and 12.212 (Computer Software) and, for the Department of Defense, DFARS 252.227-7015 (Technical Data - Commercial Items) and DFARS 227.7202-3 (Rights in Commercial Computer Software or Computer Software Documentation).

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the likes of that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the likes of that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARN-ING notice until the indicated conditions are fully understood and met.

Table of Contents

1 Remote Interface Reference

```
Remote Interface Configuration
                               2
   GPIB address
                  2
   LAN configuration
                      3
   USB interface
Introduction to the SCPI Language
SCPI Conventions and Data Formats
                                   5
Updated SCPI Commands
SCPI Command Categorization
   IEEE-488.2 Common Commands
                                   9
   System Subsystem
                       9
   Output Subsystem
                       11
                     12
   Input Subsystem
   Source Subsystem
                       13
   Sense Subsystem
                      16
                       18
   Display Subsystem
                         20
   Calculate Subsystem
   Data Subsystem
                     21
   Sweep Subsystem
                       22
   Trigger Subsystem
                       23
   Fetch Subsystem
                     23
   Initiate Subsystem
                       24
   Abort Subsystem
                      24
   Mass Memory Subsystem
                              25
   Measure Subsystem
                        25
   Status Subsystem
                      26
IEEE-488.2 Common Commands
                                27
   *CLS
          27
```

```
*RST
          28
   *ESE
          29
   *ESR?
           30
   *IDN?
           31
   *OPC
          32
   *0PT?
           33
   *SRE
          33
   *STB?
           35
   *TST?
           36
   *WAI
          37
   *TRG
          37
SCPI Status System
                    39
                     39
   Condition register
  Event register
                  39
                   39
   Enable register
  Status system diagram
                          40
  Standard Operation register
                              41
  Questionable Status registers
                                41
   Standard Event register
  Status Byte register
                       43
System Subsystem
                   45
  SYSTem:ERRor[:NEXT]?
                          45
  SYSTem:DATE
                  46
  SYSTem:TIME
                  47
  SYSTem:VERSion?
                     48
  SYSTem:COMMunicate:GPIB[:SELF]:ADDRess
                                              49
  SYSTem:COMMunicate:LAN:ADDRess
                                       50
  SYSTem:COMMunicate:LAN:DGATeway
                                        51
  SYSTem:COMMunicate:LAN:HNAMe?
                                       52
  SYSTem:COMMunicate:LAN:SMASk
                                      52
  SYSTem:COMMunicate:LAN:MAC?
                                    54
  SYSTem:COMMunicate:LAN:DHCP:ENABled
                                            55
```

```
SYSTem:CHANnel?
                      55
  SYSTem:PRESet
  SYSTem:RESet[:MODE]
                          56
  SYSTem:RESet:CHANnel
                           57
  SYSTem:LEGacv:MODE
                          58
  SYSTem:LEGacy:CHANnel
                            59
  SYSTem:DISPlay:IMAGe?
                            60
  SYSTem:REMote
                    61
  SYSTem:RWLock
                     62
  SYSTem:LOCal
                  62
  SYSTem:DIGital:CTYPe?
                          63
  SYSTem:UPDate:FIRMware?
                              63
  SYSTem:UPDate:HELP?
Output Subsystem
                   67
  OUTPut:TYPE
                 67
  OUTPut:IMPedance
                       68
  OUTPut:STATe
                  70
  OUTPut:DIGital:TYPE
                        71
  OUTPut:DIGital:SRATe
                         72
  OUTPut:DIGital:STATe
                         73
  OUTPut:DIGital:AUDio[:ENCoding]:FORMat
                                           74
  OUTPut:DIGital:AES:STATe
                             75
  OUTPut:DIGital:AES:VOLTage
  OUTPut:DIGital:AES:AUDio:RESolution
                                        77
  OUTPut:DIGital:AES:AUDio:VALidity
  OUTPut:DIGital:AES[:PROTocol]:MODE
  OUTPut:DIGital:AES[:PROTocol]:CSTatus:DATA
                                               80
  OUTPut:DIGital:AES[:PROTocol]:CSTatus:BYTE
                                              81
  OUTPut:DIGital:AES[:PROTocol]:CSTatus:FIELd
                                              83
  OUTPut:DIGital:AES[:PROTocol]:USTatus:DATA
                                               84
  OUTPut:DIGital:AES[:PROTocol]:USTatus:BYTE
                                               86
  OUTPut:DIGital:DSI:VOLTage
                              87
```

OUTPut:DIGital:DSI:AUDio:RESolution 88
OUTPut:DIGital:DSI:AUDio:WLENgth 89
OUTPut:DIGital:DSI:DATA:FORMat 90
OUTPut:DIGital:DSI:MCLK:STATe 91
OUTPut:DIGital:DSI:MCLK:MULTiplier 92
OUTPut:DIGital:DSI:MCLK:RATE? 93
OUTPut:DIGital:DSI:BCLK:SYNC:OUT 93
OUTPut:DIGital:OPTical:STATe 94
OUTPut:DIGital:RCLK:SOURce 95
OUTPut:DIGital:RCLK:EXTernal[:TYPE] 96
OUTPut:DIGital:RCLK:EXTernal:MCLK:WLENgth 97
OUTPut:DIGital:RCLK:EXTernal:MCLK:MULTiplier 98
OUTPut:DIGital:SCLK:OUT:STATe 99
OUTPut:DIGital:SCLK:OUT:SOURce 100
OUTPut:DIGital:SCLK:OUT:DIVider 101
Input Subsystem 102
INPut:TYPE 102
INPut:COUPling 103
INPut:BANDwidth 104
INPut:EXTernal:GAIN 105
INPut:EXTernal:GAIN:UNIT 107
INPut:DIGital:TYPE 108
INPut:DIGital:SRATe? 109
INPut:DIGital:IMPedance:BALanced 109
INPut:DIGital:IMPedance:UNBalanced 110
INPut:DIGital:AES:AUDio[:DECoding]:FORMat 111
INPut:DIGital:AES:AUDio:RESolution 112
INPut:DIGital:DSI:VOLTage 113
INPut:DIGital:DSI:AUDio[:DECoding]:FORMat 114
INPut:DIGital:DSI:AUDio:RESolution 115
INPut:DIGital:DSI:AUDio:WLENgth 116
INPut:DIGital:DSI:MCLK:SOURce 117

INPut:DIGital:DSI:WBCLk:DIRection 118
INPut:DIGital:DSI:MCLK:MULTiplier 119
INPut:DIGital:DSI:BCLK:SYNC 120
INPut:DIGital:DSI:DATA:FORMat 121
INPut:DIGital:DSI:DATA:MSB:PADDing 122
INPut:DIGital:FREQuency:SCALing 123
INPut:DIGital:REFerence:SRATe 124
Source Subsystem 126
SOURce:FUNCtion 126
SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet 128
SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude] 129
SOURce:FREQuency[<j>][:CW] 131</j>
SOURce:FREQuency:CENTer 133
SOURce:FREQuency:DIFFerence 135
SOURce:FREQuency:UPPer 136
SOURce:FREQuency:LOWer 138
SOURce:VOLTage:RATio 139
SOURce:PHASe[:ADJust] 141
SOURce:REFerence:IMPedance 142
SOURce:MULTitone:FREQuency:STARt 143
SOURce:MULTitone:FREQuency:STOP 144
SOURce:MULTitone:FREQuency:SPACing 146
SOURce:MULTitone:COUNt 147
SOURce:MULTitone:WLEN 148
SOURce:MULTitone:RLEN 150
SOURce:MULTitone:CRESt? 151
SOURce:MULTitone:TONE:CLEar 152
SOURce:MULTitone:TONE:ADD 153
SOURce:MULTitone:TONE:DELete 154
SOURce:MULTitone:TONE:FREQuency 155
SOURce:MULTitone:TONE:VOLTage 157
SOURce:MULTitone:TONE:PHASe 158

SOURce:MULTitone:TONE:PHASe:RANDomize 160	
SOURce:DIGital:FUNCtion 161	
SOURce:DIGital:DITHer:TYPE 163	
SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPLitude] 64	1
SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFSet 166	
SOURce:DIGital:VOLTage:RATio 168	
SOURce:DIGital:FREQuency[<j>] 169</j>	
SOURce:DIGital:FREQuency:CENTer 171	
SOURce:DIGital:FREQuency:DIFFerence 173	
SOURce:DIGital:FREQuency:UPPer 174	
SOURce:DIGital:FREQuency:LOWer 176	
SOURce:DIGital:SBURst:ONTime 177	
SOURce:DIGital:SBURst:PERiod 179	
SOURce:DIGital:SBURst:LOWLevel 180	
SOURce:DIGital:SAMPle 182	
SOURce:DIGital:PHASe[:ADJust] 183	
SOURce:DIGital:MULTitone:FREQuency:STARt 185	
SOURce:DIGital:MULTitone:FREQuency:STOP 186	
SOURce:DIGital:MULTitone:FREQuency:SPACing 188	
SOURce:DIGital:MULTitone:COUNt 189	
SOURce:DIGital:MULTitone:CRESt? 191	
SOURce:DIGital:MULTitone:TONE:CLEar 192	
SOURce:DIGital:MULTitone:TONE:ADD 193	
SOURce:DIGital:MULTitone:TONE:DELete 194	
SOURce:DIGital:MULTitone:TONE:FREQuency 195	
SOURce:DIGital:MULTitone:TONE:VOLTage 197	
SOURce:DIGital:MULTitone:TONE:PHASe 198	
SOURce:DIGital:MULTitone:TONE:PHASe:RANDomize 200	
SOURce:DIGital:REFerence:VOLTage 201	
SOURce:DIGital:BERT[:MODE] 202	
SOURce:DIGital:BERT:PATTern:CATegory 203	
SOURce:DIGital:BFRT:WCONstant:TYPE 204	

SOURce:DIGital:BERT:PSEudorandom:SEED 205	
SOURce:DIGital:BERT:WCONstant[:VALue] 206	
SOURce:DIGital:BERT:DURation 208	
SOURce:DIGital:BERT:BWIDth 209	
Sense Subsystem 210	
SENSe:VOLTage:RANGe:AUTO 210	
SENSe:VOLTage:RANGe[:UPPer] 211	
SENSe:MTIMe 213	
SENSe:VOLTage:DETector 214	
SENSe:FUNCtion <j> 215</j>	
SENSe:FUNCtion <j>:UNIT 219</j>	
SENSe:REFerence:IMPedance 220	
SENSe:REFerence:LEVel 222	
SENSe:REFerence:CHANnel 223	
SENSe:REFerence:FREQuency 224	
SENSe:REFerence:RATio 225	
SENSe:REFerence:MEASured 226	
SENSe:FILTer:LPASs 227	
SENSe:FILTer:HPASs 230	
SENSe:FILTer:WEIGhting 231	
SENSe:FILTer:LEFT 233	
SENSe:FILTer:RIGHt 235	
SENSe:AVERaging:MOVing:POINts 236	
SENSe:AVERaging:SYNC:POINts 237	
SENSe:WAVeform:POINts 238	
SENSe:FFT:WINDow 239	
SENSe:FUNDamental:FREQuency:LOCK 240	
SENSe:THDN:NOTCh:BANDwidth 241	
SENSe:SNR:DELay 243	
SENSe:SOURce:INTerface 244	
SENSe:SOURce:CHANnel 245	
SENSe: DIGital: FUND amental: FREQuency: LOCK [:SINad]	246

SENSe:DIGital:FUNDamental:FREQuency:LOCK:THD 2	48
SENSe:DIGital:FUNDamental:FREQuency 250	
SENSe:DIGital:THD:HARMonic:COUNt 251	
SENSe:DIGital:COUPling 252	
SENSe:DIGital:SAMPle:SIZE 253	
SENSe:DIGital:VOLTage:DETector 254	
SENSe:DIGital:FILTer:LPASs 256	
SENSe:DIGital:FILTer:HPASs 258	
SENSe:DIGital:FILTer:WEIGhting 260	
SENSe:DIGital:FILTer:DEEMphasis 262	
SENSe:DIGital:FILTer:SRATe 263	
SENSe:DIGital:FUNCtion <j> 265</j>	
SENSe:DIGital:FUNCtion <j>:UNIT 268</j>	
SENSe:DIGital:REFerence:LEVel 269	
SENSe:DIGital:REFerence:FREQuency 271	
SENSe:DIGital:REFerence:RATio 272	
SENSe:DIGital:REFerence:VOLTage 273	
SENSe:DIGital:REFerence:CHANnel 274	
SENSe:DIGital:REFerence:MEASured 275	
SENSe:DIGital:AVERaging:MOVing:POINts 276	
SENSe:DIGital:AVERaging:SYNC:POINts 277	
SENSe:DIGital:SNR:DELay 278	
SENSe:DIGital:SOURce:INTerface 280	
SENSe:DIGital:SOURce:CHANnel 281	
SENSe:DIGital:THDN:MODE 283	
SENSe:DIGital:FFT:WINDow 284	
SENSe:DIGital:WAVeform:POINts 285	
SENSe:DIGital:BERT:INTerval 286	
SENSe:DIGital:BERT:UNIT 287	
SENSe:NOTCh:EMULation[:STATe] 288	
Display Subsystem 289	
DISPlay:ANALysis:MODE 289	

DISPlay[:WINDow]:GRAPh:TRACe:X:SPACing 290
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:AUTO 291
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:LEFT 291
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:RIGHt 292
DISPlay[:WINDow]:GRAPh:TRACe:Y:SPACing 293
DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:AUTO 294
DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:BOTTom 294
DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:TOP 295
DISPlay[:WINDow]:GRAPh:TRACe:AUTO 296
DISPlay[:WINDow]:GRAPh:TRACe:HOLD 296
DISPlay[:WINDow]:GRAPh:TRACe:REFerence:STATe 297
DISPlay[:WINDow]:GRAPh:TRACe:REFerence:SLOT 298
DISPlay[:WINDow]:GRAPh:TRACe:REFerence:SOURce 299
DISPlay[:WINDow]:SWEep:TRACe:X:SPACing 300
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:AUTO 301
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:LEFT 301
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:RIGHt 302
DISPlay[:WINDow]:SWEep:TRACe:Y:SPACing 303
DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:AUTO 304
DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:BOTTom 304
DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:TOP 305
DISPlay[:WINDow]:SWEep:TRACe:AUTO 306
DISPlay[:WINDow]:SWEep:TRACe:HOLD 306
DISPlay[:WINDow]:SWEep:TRACe:FUNCtion 307
DISPlay[:WINDow]:SWEep:TRACe:REFerence:STATe 308
DISPlay[:WINDow]:SWEep:TRACe:REFerence:SLOT 309
DISPlay[:WINDow]:SWEep:TRACe:REFerence:SOURce 310
DISPlay[:WINDow]:VIEW 311
DISPlay[:WINDow]:MODE 312
DISPlay[:WINDow]:STATe 313
DISPlay:DIGital:ANALysis:MODE 314
DISPlay[:WINDow]:DIGital:GRAPh:TRACe:HOLD 315
DISPlay[:WINDow]:GRAPh:TRACe:INTerface 316

Calculate Subsystem 317
CALCulate:HARMonic:COUNt 317
CALCulate:HARMonic:FUNDamental? 318
CALCulate:HARMonic:VALue? 319
CALCulate:HARMonic:FREQuencies? 320
CALCulate:THDistortion? 321
CALCulate:DIGital:HARMonic:COUNt 322
CALCulate:DIGital:HARMonic:FUNDamental? 323
CALCulate:DIGital:HARMonic:VALue? 324
CALCulate:DIGital:HARMonic:FREQuencies? 326
CALCulate:DIGital:THDistortion? 327
CALCulate:GRAPh:MARKer:THReshold[:LEVel] 328
CALCulate:GRAPh:MARKer:THReshold:STATe 329
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:STATe 330
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:TRACe 331
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:X 332
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:Y? 333
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:PEAK 334
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:MIN 335
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:REFerence 3
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:XDELta? 338
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:YDELta? 339
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:MOVement 3 40
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8[:SET]:MODE 341
CALCulate:SWEep:MARKer:THReshold[:LEVel] 342
CALCulate:SWEep:MARKer:THReshold:STATe 343
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:STATe 344
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:TRACe 346
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:X 347
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:Y? 348

```
CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:PEAK
                                                    349
  CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:MIN
                                                   350
  CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:REFerence
                                                        3
     51
  CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:XDELta?
                                                      352
   CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:YDELta?
                                                      353
  CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:MOVement
                                                         3
     54
   CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8[:SET]:MODE
   CALCulate:FORMat:LEVel
                           356
   CALCulate:FORMat:FREQuency
                                358
   CALCulate:FORMat:RATio
                            359
   CALCulate:DIGital:FORMat:LEVel
                                  360
   CALCulate:DIGital:FORMat:FREQuency
                                       362
   CALCulate:DIGital:FORMat:RATio
                                  363
                365
Data Subsystem
   DATA:SWEep
                 365
   DATA:WAVeform
                    366
   DATA:WAVFile
                  368
   DATA:FILTer
                369
   DATA:DIGital:FILTer
                      372
   DATA:FILE?
               375
Sweep Subsystem
                  376
  SOURce: SWEep: INTerface
                            376
   SOURce:SWEep:CHANnel
                            377
   SOURce:SWEep:REFerence:CHANnel
                                     378
  SOURce:SWEep:MODE
                         379
                              380
   SOURce: SWEep: PARameter
   SOURce: SWEep: DWELI
                          383
   SOURce: SWEep: SPACing
                           384
  SOURce:SWEep:POINts
                          385
```

```
SOURce:SWEep:STEP
                         387
   SOURce:SWEep:STARt
                          388
   SOURce:SWEep:STOP
                          390
   SOURce:SWEep:NEXT
                          391
   SOURce: SWEep: VALues?
                            391
   SENSe:SWEep:INTerface
                            393
   SENSe:SWEep:CHANnel
                            394
   SENSe:SWEep:REFerence:CHANnel
                                      395
Trigger Subsystem
                   396
                               396
   TRIGger: ANALyzer: SOURce
   TRIGger:GRAPh:SOURce
                            397
   TRIGger:GRAPh:SLOPe
                          398
   TRIGger:DIGital:ANALyzer:SOURce
                                     399
   TRIGger:DIGital:GRAPh:SOURce
                                  400
                                 402
   TRIGger:DIGital:GRAPh:SLOPe
Fetch Subsystem
                  403
   FETCh[:SCALar]?
                     403
   FETCh:ARRay?
                   405
   FETCh:SWEep?
                   406
   FETCh:DIGital[:SCALar]?
                            408
   FETCh:DIGital:AUDio:BITS?
                              410
   FETCh:DIGital:ERRor:FLAG?
                              410
   FETCh:DIGital:DELay?
                         412
   FETCh:DIGital:BERT?
                         413
   FETCh:DIGital:ARRay?
                         414
Initiate Subsystem
   INITiate[:IMMediate]:ANALyzer
                                  416
   INITiate[:IMMediate]:GRAPh
                                417
   INITiate[:IMMediate]:SWEep
                                418
   INITiate[:IMMediate]:DIGital:ANALyzer
                                         419
   INITiate[:IMMediate]:DIGital:AUDio:BITS
                                           421
   INITiate[:IMMediate]:DIGital:BERT
                                     422
```

INITiate[:IMMediate]:DIGital:GRAPh 422
INITiate:CONTinue:ANALyzer 424
INITiate:CONTinue:DIGital:ANALyzer 425
INITiate:CONTinue:DIGital:AUDio:BITS 426
INITiate:CONTinue:DIGital:DELay 427
Abort Subsystem 429
ABORt:ANALyzer 429
ABORt:GRAPh 429
ABORt:SWEep 430
ABORt:DIGital:ANALyzer 431
ABORt:DIGital:GRAPh 431
ABORt:DIGital:BERT 432
Mass Memory Subsystem 433
MMEMory:LOAD 433
MMEMory:STORe 436
MMEMory: CATalog? 437
MMEMory:DELete 438
MMEMory:LOAD:WAVFile 440
MMEMory:LOAD:AES:STATus 441
MMEMory:STORe:AES:STATus 442
MMEMory:LOAD:STATe:PUP 444
MMEMory:STORe:SWEep 445
MMEMory:LOAD:STATe[:MODE] 446
MMEMory:LOAD:STATe:CHANnel 448
MMEMory:STORe:STATe[:MODE] 450
MMEMory:STORe:STATe:CHANnel 452
Measure Subsystem 454
MEASure:DIGital:CSTatus:DATA? 454
MEASure:DIGital:CSTatus:BYTE? 455
MEASure:DIGital:CSTatus:FIELd? 456
MEASure:DIGital:USTatus:DATA? 457
MEASura-DIGital-IISTatus-RVTF2 458

Status Subsystem 459
STATus:PRESet 459
STATus: OPERation: CONDition? 460
STATus: OPERation: ENABle 461
STATus:OPERation[:EVENt]? 462
STATus: OPERation: NTRansition 463
STATus: OPERation: PTRansition 465
STATus:QUEStionable:CONDition? 466
STATus:QUEStionable:ENABle 467
STATus:QUEStionable[:EVENt]? 468
STATus:QUEStionable:NTRansition 469
STATus:QUEStionable:PTRansition 471
STATus:QUEStionable:VOLTage:CONDition? 472
STATus:QUEStionable:VOLTage:ENABle 473
STATus:QUEStionable:VOLTage[:EVENt]? 474
STATus:QUEStionable:VOLTage:NTRansition 475
STATus:QUEStionable:VOLTage:PTRansition 477
Programming Examples 479
Generating the normal sine waveform 479
Generating the multitone waveform 480
Generating the arbitrary waveform 482
Making basic measurements 484
Measuring the crosstalk 486
Measuring the FFT magnitude 487
Measuring the FFT phase 487
Measuring in the time domain 488
Performing sweep 488
Using the user-defined filter data 493
Making relative measurement 495
Configuring the system clock reference settings 498
Configuring the DSI output settings 498
Configuring the AES3/SPDIF interface channel status bits data 499

Configuring for Bit Error Rate Test (BERT) 501

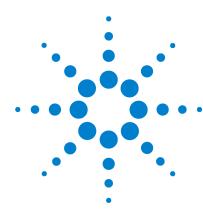
Measuring time delay introduced by DUT 503

Configuring Digital Serial Interface (DSI) receiver 504

Reading the bits value in the embedded received audio data 508

Acquiring the Channel Status Byte information 509

2 SCPI Command Summary


SCPI Command Summary 512 IEEE-488.2 common commands 512 513 System commands **Output commands** 515 517 Input commands Source commands 519 Sense commands 524 Display commands 529 532 Calculate commands Data commands 535 536 Sweep commands **Trigger commands** 537 Fetch commands 538 Initiate commands 539 Abort commands 540 Mass Memory commands 540 Measure commands 542 Status commands 542

3 Error Messages

Error Messages 546
Error List 547

A Appendixes

Appendix A: Waveform Frequency Range and Default Values 568
Analog waveforms 568
Digital waveforms 569
Appendix B: Units of the Measurement Function Returned Values 571
Analog analyzer 571 Digital analyzer 572
Appendix C: Waveform Parameters 575
Analog generator 575
Digital generator 576
Appendix D: Analog Waveform Amplitude Range 579
Appendix E: Relationship between Digital Waveform Parameters and Channels 580
Appendix F: Sweep Start and Stop Range 582
Appendix G: Using the IEEE-488.2 Binary Block Format 583
Appendix H: Sending HP8903B Commands to the U8903A 584 Supported HP8903B commands list 585 Example of usage 593
Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names 594
Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface 597
Appendix K: Word Length, Sampling Rate, and Multiplier for Master Clock In 604


```
Remote Interface Configuration 2
Introduction to the SCPI Language 5
SCPI Conventions and Data Formats 5
Updated SCPI Commands 7
SCPI Command Categorization 9
IEEE-488.2 Common Commands 27
SCPI Status System 39
System Subsystem 45
Output Subsystem 67
Input Subsystem 102
Source Subsystem 126
Sense Subsystem 210
Display Subsystem 289
Calculate Subsystem 317
Data Subsystem 365
Sweep Subsystem 376
Trigger Subsystem 396
Fetch Subsystem 403
Initiate Subsystem 416
Abort Subsystem 429
Mass Memory Subsystem 433
Measure Subsystem 454
Status Subsystem 459
Programming Examples 479
```

This chapter describes how to configure and program the U8903A over a remote interface.

Remote Interface Configuration

This section describes how to configure the GPIB (IEEE-488), LAN, and USB remote interfaces.

NOTE

- For more information on configuring the remote interface connectivity, refer to the Agilent Technologies USB/LAN/GPIB Interfaces Connectivity Guide.
- If you have installed the IO Libraries Suite, you can access the Connectivity Guide via the Agilent IO Libraries Control icon.
 Alternatively, you can access the Connectivity Guide via the Web at www.agilent.com/find/connectivity.

You can choose to control the U8903A remotely using the GPIB, LAN, or USB interfaces.

GPIB address

Each device on the GPIB interface must have a unique address. You can set the U8903A address to any value between 0 and 30. The U8903A is shipped with a default address of 28. The GPIB address is stored in nonvolatile memory, and does not change when the U8903A is switched off, or after a remote interface reset.

The GPIB bus controller has its own address. Avoid using the bus controller address for any instrument on the interface bus. Agilent controllers generally use the address of 21.

Use the following command to set the GPIB address from the remote interface.

SYSTem: COMMunicate: GPIB: ADDRess

Use the following command to query the GPIB address from the remote interface.

SYSTem: COMMunicate: GPIB: ADDRess?

LAN configuration

The U8903A supports three LAN operating modes as follows.

- Dynamic IP (Dynamic Host Configuration Protocol or DHCP)
- Auto IP (local PC control or isolated LAN)
- Static IP (manual configuration)

Configuring the LAN remotely

The IP address, subnet mask, and default gateway can be changed manually or remotely. To remotely specify the LAN settings, use the following commands.

- IP Address: SYSTem:COMMunicate:LAN:ADDRess
- Subnet Mask: SYSTem:COMMunicate:LAN:SMASk
- Default Gateway: SYSTem:COMMunicate:LAN:DGATeway

The values for the IP address, subnet mask, and default gateway can range between 0.0.0.0 and 255.255.255.255.

NOTE

If you set an invalid IP address or an IP address that is used by another device or host, an error message is generated. This error can be read by using the SYSTem: ERRor? command.

The LAN settings are stored in nonvolatile memory.

Remote Interface Configuration

USB interface

The USB interface does not require front panel or remote configuration.

The USB address cannot be changed as it is set at the factory and is unique for each U8903A.

NOTE

- Before connecting the USB cable, make sure that the Agilent IO Libraries software is installed on your PC.
- For more information on the Agilent IO Libraries software, refer to the Agilent Technologies USB/LAN/GPIB Interfaces Connectivity Guide. If you have installed other I/O software, refer to the documentation that accompanies the software.

Introduction to the SCPI Language

SCPI, also known as the Standard Commands for Programmable Instruments, is an ASCII-based instrument command language designed for test and measurement instruments. SCPI commands are based on a hierarchical structure, also known as a tree system. In this system, associated commands are grouped together under a common node or root, thus forming subsystems. A portion of the Source subsystem is shown below to illustrate the tree system.

```
[SOURce:]
SWEep:
MODE <mode>, (@<channel>)
```

SOURce is the root keyword of the command, SWEep is the second-level keyword, and MODE is the third-level keyword. A colon (:) separates a command keyword from a lower-level keyword.

SCPI Conventions and Data Formats

The following SCPI conventions are used throughout this chapter.

Angle brackets <>	Items within angle brackets are parameter abbreviations. The brackets are not sent with the command string.
Vertical bar	Vertical bars separate alternative parameters.
Square brackets []	Items within square brackets are optional. The representation of [SOURce:]FUNCtion means that SOURce: may be omitted. The brackets are not sent with the command string.
Parenthesis ()	Items within parentheses are used to specify a channel list.
Braces { }	Braces enclose the parameter choices for a given command string. The braces are not sent with the command string.

SCPI Conventions and Data Formats

The SCPI language defines several different data formats to be used in program messages and response messages.

Numeric Commands that require parameters to accept all commonly

used decimal representations of numbers including optional signs, decimal points, and scientific notation. You can also send engineering unit suffixes with numeric

parameters such as MHz or kHz.

Discrete Parameters used to program settings that have a limited

number of values such as BUS, IMMediate, and EXTernal. They have a short form and a long form just like command keywords. You can mix upper- and lower-case letters. Query responses will always return the short form in all

upper-case letters.

Boolean Parameters that represent a single binary condition that is

either true or false. For a false condition, the U8903A will accept OFF or 0. For a true condition, the U8903A will accept ON or 1. When you query a boolean setting, the

U8903A will always return 0 or 1.

String Parameters that contain virtually any set of ASCII

characters. A string must begin and end with matching quotes, either with a single quote or a double quote. You can include the quote delimiter as part of the string by

typing it twice without any characters in between.

Block Parameter that allows binary data (including extended

ASCII codes) to be transmitted as a sequence of bytes. This is more efficient than the text format when

transferring large amounts of data. Either definite length

or indefinite length arbitrary data may be transmitted or

returned.

Updated SCPI Commands

Firmware 2.3.2.0 and below	Firmware 2.10.1.0 and above
SOURce:MULTitone:COUNt	Updated the SCPI command parameters. Refer to "SOURce:MULTitone:COUNt" for more information.
SOURce:MULTitone:PHASe[:MODE] <type>, (@<channel list="">)</channel></type>	This SCPI command is not applicable for Firmware 2.10.1.0 and above as the implementation is different. Refer to "Generating the multitone waveform" on page 480 for more information.
SOURce:FREQuency:STARt	This SCPI command is not applicable for Firmware 2.10.1.0 and above. Refer to "SOURce:MULTitone:FREQuency:STARt" for more information.
SOURce:FREQuency:MULTiplier < multiplier>, (@ <channel list="">)</channel>	This SCPI command is not applicable for Firmware 2.10.1.0 and above as the implementation is different. Refer to "Generating the multitone waveform" on page 480 for more information.
DISPlay[:WINDow]:VIEW <view>, [<channel>]</channel></view>	Updated the SCPI command parameters. Refer to "DISPlay[:WINDow]:VIEW" for more information.
SOURce:SWEep:CHANnel <channel></channel>	The channel parameter is optional. Refer to "SOURce:SWEep:CHANnel" for more information.
SOURce:SWEep:MODE <mode>, (@<channel>)</channel></mode>	The channel parameter is optional. Refer to "SOURce:SWEep:MODE" for more information.
SOURce:SWEep:PARameter <sweep parameter="">, (@<channel>)</channel></sweep>	The channel parameter is optional. Refer to "SOURce:SWEep:PARameter" for more information.
SOURce:SWEep:SPACing <spacing>, (@<channel>)</channel></spacing>	The channel parameter is optional. Refer to "SOURce:SWEep:SPACing" for more information.
SOURce:SWEep:POINts <points>, (@<channel>)</channel></points>	The channel parameter is optional. Refer to "SOURce:SWEep:POINts" for more information.
SOURce:SWEep:DWELI <delay>, (@<channel>)</channel></delay>	The channel parameter is optional. Refer to "SOURce:SWEep:DWELI" for more information.
SOURce:SWEep:STEP <step>, (@<channel>)</channel></step>	The channel parameter is optional. Refer to "SOURce:SWEep:STEP" for more information.
SOURce:SWEep:STARt <start>, (@<channel>)</channel></start>	The channel parameter is optional. Refer to "SOURce:SWEep:STARt" for more information.

Updated SCPI Commands

Firmware 2.3.2.0 and below	Firmware 2.10.1.0 and above
SOURce:SWEep:STOP <stop>, (@<channel>)</channel></stop>	The channel parameter is optional. Refer to "SOURce:SWEep:STOP" for more information.
FETCh:SWEep?	Updated the SCPI command parameters. Refer to "FETCh:SWEep?" for more information.
MMEMory:STORe SWEep <filename></filename>	Updated the SCPI command parameters. Refer to "MMEMory:STORe:SWEep" for more information.
MMEMory:LOAD:STATe:CHANnel <location>, SWEEP, (@<channel list="">), <filename></filename></channel></location>	This SCPI command is not applicable for Firmware 2.10.1.0 and above as the implementation is different. Refer to "MMEMory:LOAD:STATe:CHANnel" for more information.
MMEMory:STORe:STATe:CHANnel <location>, SWEEP, (@<channel>), <filename></filename></channel></location>	This SCPI command is not applicable for Firmware 2.10.1.0 and above as the implementation is different. Refer to "MMEMory:STORe:STATe:CHANnel" for more information

SCPI Command Categorization

IEEE-488.2 Common Commands

Command	Analog interface	Digital interface
*CLS	√	✓
*RST	✓	✓
*ESE	✓	✓
*ESR?	✓	✓
*IDN?	✓	✓
*OPC	✓	✓
*OPT?	✓	✓
*SRE	✓	✓
*STB?	✓	✓
*TST?	✓	✓
*WAI	✓	✓
*TRG	✓	✓

System Subsystem

Command	Analog interface	Digital interface
SYSTem:ERRor[:NEXT]?	✓	✓
SYSTem:DATE	✓	✓
SYSTem:TIME	✓	✓
SYSTem:VERSion?	✓	✓

SCPI Command Categorization

Command	Analog interface	Digital interface
SYSTem:COMMunicate:GPIB[:SELF]:ADDRess	✓	✓
SYSTem:COMMunicate:LAN:ADDRess	✓	✓
SYSTem:COMMunicate:LAN:DGATeway	✓	✓
SYSTem:COMMunicate:LAN:HNAMe?	✓	✓
SYSTem:COMMunicate:LAN:SMASk	✓	✓
SYSTem:COMMunicate:LAN:MAC?	✓	✓
SYSTem:COMMunicate:LAN:DHCP:ENABled	✓	✓
SYSTem:CHANnel?	✓	
SYSTem:PRESet	✓	✓
SYSTem:RESet[:MODE]	✓	✓
SYSTem:RESet:CHANnel	✓	✓
SYSTem:LEGacy:MODE	✓	✓
SYSTem:LEGacy:CHANnel	✓	✓
SYSTem:DISPlay:IMAGe?	✓	✓
SYSTem:REMote	✓	✓
SYSTem:RWLock	✓	✓
SYSTem:L0Cal	✓	✓
SYSTem:DIGital:CTYPe?		✓
SYSTem:UPDate:FIRMware?	✓	✓
SYSTem:UPDate:HELP?	✓	✓

Output Subsystem

Command	Analog interface	Digital interface
OUTPut:TYPE	✓	
OUTPut:IMPedance	✓	
OUTPut:STATe	✓	
OUTPut:DIGital:TYPE		✓
OUTPut:DIGital:SRATe		✓
OUTPut:DIGital:STATe		✓
OUTPut:DIGital:AUDio[:ENCoding]:FORMat		✓
OUTPut:DIGital:AES:STATe		✓
OUTPut:DIGital:AES:VOLTage		✓
OUTPut:DIGital:AES:AUDio:RESolution		✓
OUTPut:DIGital:AES:AUDio:VALidity		✓
OUTPut:DIGital:AES[:PROTocol]:MODE		✓
OUTPut:DIGital:AES[:PROTocol]:CSTatus:DATA		✓
OUTPut:DIGital:AES[:PROTocol]:CSTatus:BYTE		✓
OUTPut:DIGital:AES[:PROTocol]:CSTatus:FIELd		✓
OUTPut:DIGital:AES[:PROTocol]:USTatus:DATA		✓
OUTPut:DIGital:AES[:PROTocol]:USTatus:BYTE		✓
OUTPut:DIGital:DSI:VOLTage		✓
OUTPut:DIGital:DSI:AUDio:RESolution		✓
OUTPut:DIGital:DSI:AUDio:WLENgth		✓
OUTPut:DIGital:DSI:DATA:FORMat		✓
OUTPut:DIGital:DSI:MCLK:STATe		✓
OUTPut:DIGital:DSI:MCLK:MULTiplier		✓
OUTPut:DIGital:DSI:MCLK:RATE?		✓

SCPI Command Categorization

Command	Analog interface	Digital interface
OUTPut:DIGital:DSI:BCLK:SYNC:OUT		✓
OUTPut:DIGital:OPTical:STATe		✓
OUTPut:DIGital:RCLK:SOURce		✓
OUTPut:DIGital:RCLK:EXTernal[:TYPE]		✓
OUTPut:DIGital:RCLK:EXTernal:MCLK:WLENgth		✓
OUTPut:DIGital:RCLK:EXTernal:MCLK:MULTiplier		✓
OUTPut:DIGital:SCLK:OUT:STATe		✓
OUTPut:DIGital:SCLK:OUT:SOURce		✓
OUTPut:DIGital:SCLK:OUT:DIVider		✓

Input Subsystem

Command	Analog interface	Digital interface
INPut:TYPE	✓	
INPut:COUPling	✓	
INPut:BANDwidth	✓	
INPut:EXTernal:GAIN	✓	
INPut:EXTernal:GAIN:UNIT	✓	
INPut:DIGital:TYPE		✓
INPut:DIGital:SRATe?		✓
INPut:DIGital:IMPedance:BALanced		✓
INPut:DIGital:IMPedance:UNBalanced		✓
INPut:DIGital:AES:AUDio[:DECoding]:FORMat		✓
INPut:DIGital:AES:AUDio:RESolution		✓
INPut:DIGital:DSI:VOLTage		✓

Command	Analog interface	Digital interface
INPut:DIGital:DSI:AUDio[:DECoding]:FORMat		✓
INPut:DIGital:DSI:AUDio:RESolution		✓
INPut:DIGital:DSI:AUDio:WLENgth		✓
INPut:DIGital:DSI:MCLK:SOURce		✓
INPut:DIGital:DSI:WBCLk:DIRection		✓
INPut:DIGital:DSI:MCLK:MULTiplier		✓
INPut:DIGital:DSI:BCLK:SYNC		✓
INPut:DIGital:DSI:DATA:FORMat		✓
INPut:DIGital:DSI:DATA:MSB:PADDing		✓
INPut:DIGital:FREQuency:SCALing		✓
INPut:DIGital:REFerence:SRATe		✓

Source Subsystem

Command	Analog interface	Digital interface
SOURce:FUNCtion	✓	
SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet	✓	
SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude]	✓	
SOURce:FREQuency[<j>][:CW]</j>	✓	
SOURce:FREQuency:CENTer	✓	
SOURce:FREQuency:DIFFerence	✓	
SOURce:FREQuency:UPPer	✓	
SOURce:FREQuency:LOWer	✓	
SOURce:VOLTage:RATio	✓	
SOURce:PHASe[:ADJust]	✓	

SCPI Command Categorization

Command	Analog interface	Digital interface
SOURce:REFerence:IMPedance	✓	
SOURce:MULTitone:FREQuency:STARt	✓	
SOURce:MULTitone:FREQuency:STOP	✓	
SOURce:MULTitone:FREQuency:SPACing	✓	
SOURce:MULTitone:COUNt	✓	
SOURce:MULTitone:WLEN	✓	
SOURce:MULTitone:RLEN	✓	
SOURce:MULTitone:CRESt?	✓	
SOURce:MULTitone:TONE:CLEar	✓	
SOURce:MULTitone:TONE:ADD	✓	
SOURce:MULTitone:TONE:DELete	✓	
SOURce:MULTitone:TONE:FREQuency	✓	
SOURce:MULTitone:TONE:VOLTage	✓	
SOURce:MULTitone:TONE:PHASe	✓	
SOURce:MULTitone:TONE:PHASe:RANDomize	✓	
SOURce:DIGital:FUNCtion		✓
SOURce:DIGital:DITHer:TYPE		✓
SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPLitude]		✓
SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:0FFSet		✓
SOURce:DIGital:VOLTage:RATio		✓
SOURce:DIGital:FREQuency[<j>]</j>		✓
SOURce:DIGital:FREQuency:CENTer		✓
SOURce:DIGital:FREQuency:DIFFerence		✓
SOURce:DIGital:FREQuency:UPPer		✓
SOURce:DIGital:FREQuency:LOWer		✓
SOURce:DIGital:SBURst:ONTime		✓

Command	Analog interface	Digital interface
SOURce:DIGital:SBURst:PERiod		✓
SOURce:DIGital:SBURst:LOWLevel		✓
SOURce:DIGital:SAMPle		✓
SOURce:DIGital:PHASe[:ADJust]		✓
SOURce:DIGital:MULTitone:FREQuency:STARt		✓
SOURce:DIGital:MULTitone:FREQuency:STOP		✓
SOURce:DIGital:MULTitone:FREQuency:SPACing		✓
SOURce:DIGital:MULTitone:COUNt		✓
SOURce:DIGital:MULTitone:CRESt?		✓
SOURce:DIGital:MULTitone:TONE:CLEar		✓
SOURce:DIGital:MULTitone:TONE:ADD		✓
SOURce:DIGital:MULTitone:TONE:DELete		✓
SOURce:DIGital:MULTitone:TONE:FREQuency		✓
SOURce:DIGital:MULTitone:TONE:VOLTage		✓
SOURce:DIGital:MULTitone:TONE:PHASe		✓
SOURce:DIGital:MULTitone:TONE:PHASe:RANDomize		✓
SOURce:DIGital:REFerence:VOLTage		✓
SOURce:DIGital:BERT[:MODE]		✓
SOURce:DIGital:BERT:PATTern:CATegory		✓
SOURce:DIGital:BERT:WCONstant:TYPE		✓
SOURce:DIGital:BERT:PSEudorandom:SEED		✓
SOURce:DIGital:BERT:WCONstant[:VALue]		✓
SOURce:DIGital:BERT:DURation		✓
SOURce:DIGital:BERT:BWIDth		✓

SCPI Command Categorization

Sense Subsystem

Command	Analog interface	Digital interface
SENSe:V0LTage:RANGe:AUT0	✓	
SENSe:VOLTage:RANGe[:UPPer]	✓	
SENSe:MTIMe	✓	
SENSe:VOLTage:DETector	✓	
SENSe:FUNCtion <j></j>	✓	
SENSe:FUNCtion <j>:UNIT</j>	✓	
SENSe:REFerence:IMPedance	✓	
SENSe:REFerence:LEVel	✓	
SENSe:REFerence:CHANnel	✓	
SENSe:REFerence:FREQuency	✓	
SENSe:REFerence:RATio	✓	
SENSe:REFerence:MEASured	✓	
SENSe:FILTer:LPASs	✓	
SENSe:FILTer:HPASs	✓	
SENSe:FILTer:WEIGhting	✓	
SENSe:FILTer:LEFT	✓	
SENSe:FILTer:RIGHt	✓	
SENSe:AVERaging:MOVing:POINts	✓	
SENSe:AVERaging:SYNC:POINts	✓	
SENSe:WAVeform:POINts	✓	
SENSe:FFT:WINDow	✓	
SENSe:FUNDamental:FREQuency:LOCK	✓	
SENSe:THDN:NOTCh:BANDwidth	✓	
SENSe:SNR:DELay	✓	

Command	Analog interface	Digital interface
SENSe:SOURce:INTerface	✓	
SENSe:SOURce:CHANnel	✓	
SENSe:DIGital:FUNDamental:FREQuency:LOCK[:SINad]		✓
SENSe:DIGital:FUNDamental:FREQuency:LOCK:THD		✓
SENSe:DIGital:FUNDamental:FREQuency		✓
SENSe:DIGital:THD:HARMonic:COUNt		✓
SENSe:DIGital:COUPling		✓
SENSe:DIGital:SAMPle:SIZE		✓
SENSe:DIGital:VOLTage:DETector		✓
SENSe:DIGital:FILTer:LPASs		✓
SENSe:DIGital:FILTer:HPASs		✓
SENSe:DIGital:FILTer:WEIGhting		✓
SENSe:DIGital:FILTer:DEEMphasis		✓
SENSe:DIGital:FILTer:SRATe		✓
SENSe:DIGital:FUNCtion <j></j>		✓
SENSe:DIGital:FUNCtion <j>:UNIT</j>		✓
SENSe:DIGital:REFerence:LEVel		✓
SENSe:DIGital:REFerence:FREQuency		✓
SENSe:DIGital:REFerence:RATio		✓
SENSe:DIGital:REFerence:VOLTage		✓
SENSe:DIGital:REFerence:CHANnel		✓
SENSe:DIGital:REFerence:MEASured		✓
SENSe:DIGital:AVERaging:MOVing:POINts		✓
SENSe:DIGital:AVERaging:SYNC:POINts		✓
SENSe:DIGital:SNR:DELay		✓
SENSe:DIGital:SOURce:INTerface		✓

SCPI Command Categorization

Command	Analog interface	Digital interface
SENSe:DIGital:SOURce:CHANnel		✓
SENSe:DIGital:THDN:MODE		✓
SENSe:DIGital:FFT:WINDow		✓
SENSe:DIGital:WAVeform:P0INts		✓
SENSe:DIGital:BERT:INTerval		✓
SENSe:DIGital:BERT:UNIT		✓
SENSe:NOTCh:EMULation[:STATe]	✓	

Display Subsystem

Command	Analog interface	Digital interface
DISPlay:ANALysis:MODE	✓	
DISPlay[:WINDow]:GRAPh:TRACe:X:SPACing	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:AUTO	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:LEFT	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:RIGHt	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:Y:SPACing	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:AUTO	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:BOTTom	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:TOP	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:AUTO	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:HOLD	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:REFerence:STATe	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:REFerence:SLOT	✓	✓
DISPlay[:WINDow]:GRAPh:TRACe:REFerence:SOURce	✓	✓

Command	Analog interface	Digital interface
DISPlay[:WINDow]:SWEep:TRACe:X:SPACing	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:AUTO	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:LEFT	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:RIGHt	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:Y:SPACing	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:AUTO	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:BOTTom	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:TOP	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:AUTO	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:HOLD	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:FUNCtion	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:REFerence:STATe	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:REFerence:SLOT	✓	✓
DISPlay[:WINDow]:SWEep:TRACe:REFerence:SOURce	✓	✓
DISPlay[:WINDow]:VIEW	✓	✓
DISPlay[:WINDow]:MODE	✓	✓
DISPlay[:WINDow]:STATe	✓	✓
DISPlay:DIGital:ANALysis:MODE		✓
DISPlay[:WINDow]:DIGital:GRAPh:TRACe:HOLD		✓
DISPlay[:WINDow]:GRAPh:TRACe:INTerface	✓	✓

SCPI Command Categorization

Calculate Subsystem

Command	Analog interface	Digital interface
CALCulate:HARMonic:COUNt	✓	
CALCulate:HARMonic:FUNDamental?	✓	
CALCulate:HARMonic:VALue?	✓	
CALCulate:HARMonic:FREQuencies?	✓	
CALCulate:THDistortion?	✓	
CALCulate:DIGital:HARMonic:COUNt		✓
CALCulate:DIGital:HARMonic:FUNDamental?		✓
CALCulate:DIGital:HARMonic:VALue?		✓
CALCulate:DIGital:HARMonic:FREQuencies?		✓
CALCulate:DIGital:THDistortion?		✓
CALCulate:GRAPh:MARKer:THReshold[:LEVel]	✓	✓
CALCulate:GRAPh:MARKer:THReshold:STATe	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:STATe	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:TRACe	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:X	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:Y?	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:PEAK	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:MIN	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:REFerence	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:XDELta?	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:YDELta?	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8:MOVement	✓	✓
CALCulate:GRAPh:MARKer[1] 2 3 4 5 6 7 8[:SET]:MODE	✓	✓
CALCulate:SWEep:MARKer:THReshold[:LEVel]	✓	✓

Command	Analog interface	Digital interface
CALCulate:SWEep:MARKer:THReshold:STATe	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:STATe	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:TRACe	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:X	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:Y?	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:PEAK	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:MIN	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:REFerence	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:XDELta?	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:YDELta?	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8:MOVement	✓	✓
CALCulate:SWEep:MARKer[1] 2 3 4 5 6 7 8[:SET]:MODE	✓	✓
CALCulate:F0RMat:LEVel	✓	
CALCulate:F0RMat:FREQuency	✓	
CALCulate:F0RMat:RATio	✓	
CALCulate:DIGital:FORMat:LEVel		✓
CALCulate:DIGital:FORMat:FREQuency		✓
CALCulate:DIGital:FORMat:RATio		✓

Data Subsystem

Command	Analog interface	Digital interface
DATA:SWEep	✓	✓
DATA:WAVeform	✓	
DATA:WAVFile		✓

SCPI Command Categorization

Command	Analog interface	Digital interface
DATA:FILTer	✓	
DATA:DIGital:FILTer		✓
DATA:FILE?	✓	✓

Sweep Subsystem

Command	Analog interface	Digital interface
SOURce:SWEep:INTerface	✓	✓
SOURce:SWEep:CHANnel	✓	✓
SOURce:SWEep:REFerence:CHANnel	✓	✓
SOURce:SWEep:MODE	✓	✓
SOURce:SWEep:PARameter	✓	✓
SOURce:SWEep:DWELI	✓	✓
SOURce:SWEep:SPACing	✓	✓
SOURce:SWEep:POINts	✓	✓
SOURce:SWEep:STEP	✓	✓
SOURce:SWEep:STARt	✓	✓
SOURce:SWEep:STOP	✓	✓
SOURce:SWEep:NEXT	✓	✓
SOURce:SWEep:VALues?	✓	✓
SENSe:SWEep:INTerface	✓	✓
SENSe:SWEep:CHANnel	✓	✓
SENSe:SWEep:REFerence:CHANnel	✓	✓

Trigger Subsystem

Command	Analog interface	Digital interface
TRIGger:ANALyzer:SOURce	✓	
TRIGger:GRAPh:SOURce	✓	
TRIGger:GRAPh:SLOPe	✓	
TRIGger:DIGital:ANALyzer:SOURce		✓
TRIGger:DIGital:GRAPh:SOURce		✓
TRIGger:DIGital:GRAPh:SLOPe		✓

Fetch Subsystem

Command	Analog interface	Digital interface
FETCh[:SCALar]?	✓	
FETCh:ARRay?	✓	
FETCh:SWEep?	✓	✓
FETCh:DIGital[:SCALar]?		✓
FETCh:DIGital:AUDio:BITS?		✓
FETCh:DIGital:ERRor:FLAG?		✓
FETCh:DIGital:DELay?		✓
FETCh:DIGital:BERT?		✓
FETCh:DIGital:ARRay?		✓

SCPI Command Categorization

Initiate Subsystem

Command	Analog interface	Digital interface
INITiate[:IMMediate]:ANALyzer	✓	
INITiate[:IMMediate]:GRAPh	✓	
INITiate[:IMMediate]:SWEep	✓	✓
INITiate[:IMMediate]:DIGital:ANALyzer		✓
INITiate[:IMMediate]:DIGital:AUDio:BITS		✓
INITiate[:IMMediate]:DIGital:BERT		✓
INITiate[:IMMediate]:DIGital:GRAPh		✓
INITiate:CONTinue:ANALyzer	✓	
INITiate:CONTinue:DIGital:ANALyzer		✓
INITiate:CONTinue:DIGital:AUDio:BITS		✓
INITiate:CONTinue:DIGital:DELay		✓

Abort Subsystem

Command	Analog interface	Digital interface
ABORt:ANALyzer	✓	
ABORt:GRAPh	✓	
ABORt:SWEep	✓	✓
ABORt:DIGital:ANALyzer		✓
ABORt:DIGital:GRAPh		✓
ABORt:DIGital:BERT		✓

Mass Memory Subsystem

Command	Analog interface	Digital interface
MMEMory:LOAD	✓	✓
MMEMory:STORe	✓	✓
MMEMory:CATalog?	✓	✓
MMEMory:DELete	✓	✓
MMEMory:LOAD:WAVFile		✓
MMEMory:LOAD:AES:STATus		✓
MMEMory:STORe:AES:STATus		✓
MMEMory:LOAD:STATe:PUP	✓	✓
MMEMory:STORe:SWEep	✓	✓
MMEMory:LOAD:STATe[:MODE]	✓	✓
MMEMory:LOAD:STATe:CHANnel	✓	✓
MMEMory:STORe:STATe[:MODE]	✓	✓
MMEMory:STORe:STATe:CHANnel	✓	✓

Measure Subsystem

Command	Analog interface	Digital interface
MEASure:DIGital:CSTatus:DATA?		✓
MEASure:DIGital:CSTatus:BYTE?		✓
MEASure:DIGital:CSTatus:FIELd?		✓
MEASure:DIGital:USTatus:DATA?		✓
MEASure:DIGital:USTatus:BYTE?		✓

SCPI Command Categorization

Status Subsystem

Command	Analog interface	Digital interface
STATus:PRESet	✓	✓
STATus:OPERation:CONDition?	✓	✓
STATus: OPERation: ENABle	✓	✓
STATus:OPERation[:EVENt]?	✓	✓
STATus: OPERation: NTRansition	✓	✓
STATus:OPERation:PTRansition	✓	✓
STATus:QUEStionable:CONDition?	✓	✓
STATus:QUEStionable:ENABle	✓	✓
STATus:QUEStionable[:EVENt]?	✓	✓
STATus:QUEStionable:NTRansition	✓	✓
STATus:QUEStionable:PTRansition	✓	✓
STATus:QUEStionable:VOLTage:CONDition?	✓	✓
STATus:QUEStionable:VOLTage:ENABle	✓	✓
STATus:QUEStionable:VOLTage[:EVENt]?	✓	✓
STATus:QUEStionable:VOLTage:NTRansition	✓	✓
STATus:QUEStionable:VOLTage:PTRansition	✓	✓

IEEE-488.2 Common Commands

The IEEE-488.2 standard defines a set of common commands that perform functions such as reset, self-test, and status operation. Common commands always begin with an asterisk (*), are three characters in length, and may include one or more parameters. The command keyword is separated from the first parameter by a blank space. Use a semicolon (;) to separate multiple commands as shown below.

*RST; *CLS; *ESE 32; *OPC?

*CLS

Syntax

*CLS

Description

Clears the event registers in all register groups and also clears the error queue.

Example

The following command is used to clear all event registers and the error queue.

*CLS

*RST

Syntax

*RST

Description

Resets the U8903A to its factory default settings.

Remarks

- This command does not affect any user-defined files in the U8903A memory.
- The time taken to reset all settings for all channels of the U8903A is approximately 5 s. If you only wish to reset the settings for a particular channel, use the SYSTem:RESet:CHANnel command instead. To reset the settings for only a particular mode such as the generator mode, use the SYSTem:RESet[:MODE] command.

Example

The following command resets all settings for all channels of the U8903A to its factory default settings.

*RST

*ESE

Syntax

*ESE <value>

*ESE?

Description

Sets the bits in the Standard Event enable register. The selected bits are then reported to bit 5 of the Status Byte register. The query reads the enable register and returns a decimal value which corresponds to the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	0

Remarks

- The bit definitions for the Standard Event register are listed in "Standard Event register" on page 42.
- Use the <value> parameter to specify which bits will be enabled. The specified decimal value corresponds to the binary-weighted sum of the bits you wish to enable in the register. For example, to enable bit 2 (decimal value = 4), bit 3 (decimal value = 8), and bit 7 (decimal value = 128), the corresponding decimal value would be 140 (4 + 8 + 128).
- The clear status (*CLS) command will not clear the enable register but it clears all bits in the event register.
- The *RST or SYSTem: PRESet command does not affect the settings enabled by this command. However, cycling the U8903A power will reset this register to 0.

IEEE-488.2 Common Commands

Examples

The following command enables bit 4 (decimal value = 16) in the enable register. If an Execution Error occurs, this condition will be reported to the Status Byte register (bit 5 will be set to high).

*ESE 16

The following query returns the bits set in the register.

*ESE?

Typical response: 16

*ESR?

Syntax

*ESR?

Description

Reads the event register of the Standard Event register group and returns a decimal value which corresponds to the binary-weighted sum of all bits set in the register.

Remarks

- The bit definitions for the Standard Event register are listed in "Standard Event register" on page 42.
- Once a bit is set, it remains set until cleared by a clear status (*CLS) command or queried by this command.

Example

The following query reads the event register (bits 3 and 4 are set).

*ESR?

*IDN?

Syntax

*IDN?

Description

Reads the U8903A identification string which contains four comma-separated fields. The first field is the manufacturer's name, the second field is the instrument model number, the third field is the serial number, and the fourth field is the firmware revision. This query returns an ASCII string with the following format.

<Manufacturer's name>,<model number>,<serial number>,
<firmware revision>

Agilent Technologies Manufacturer

U8903A Instrument model number

MYxxxxxxx Instrument serial number if

available, or 0

x.x.x.x Firmware revision levels

Example

The following query returns the U8903A identification string.

*IDN?

Typical response:

AGILENT TECHNOLOGIES, U8903A, MY00123456, 1.0.0.0

*OPC

Syntax

*OPC

*OPC?

Description

Sets the "Operation Complete" bit (bit 0) in the Standard Event register when all pending operations have completed. This query sends 1 to the output buffer when all pending operations have completed.

Remark

This command is used to synchronize your application with the U8903A.

Examples

The following command sets the "Operation Complete" bit.

*OPC

The following query waits until the completion of the current command and then sends 1 to the output buffer.

*OPC?

*0PT?

Syntax

*OPT?

Description

Returns an ASCII string identifying the digital audio option configuration.

Remark

This command is used to verify the installed option in the U8903A.

Examples

The following query returns the U8903A installed digital audio option string.

*OPT?

Typical response: "None"

*SRE

Syntax

*SRE <value>

*SRE?

Description

Enables the bits in the Status Byte enable register. The selected enabled bits are summarized in the "Master Summary" bit (bit 6) of the Status Byte register. If any of the selected bit condition changes from 0 to 1, a Service Request is generated. The query reads the enable register and returns a decimal value that corresponds to the binary-weighted sum of all bits set in the register.

Parameter

ltem	Туре	Range of values	Default value
value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	0

Remarks

- The bit definitions for the Status Byte register are listed in "Status Byte register" on page 43.
- Use the <value> parameter to specify which bits to enable. The specified decimal value corresponds to the binary-weighted sum of the bits you wish to enable in the register. For example, to enable bit 2 (decimal value = 4) and bit 5 (decimal value = 32), the corresponding decimal value would be 36 (4 + 32).
- The STATus: PRESet, SYSTem: PRESet, *CLS, or *RST command does not clear the bits in the Status Byte enable register.
- Cycling the U8903A power will reset it to 0.

Examples

The following command enables bit 4 (decimal value = 16) in the enable register.

The following query returns which bits are enabled in the register.

^{*}SRE 16

^{*}SRE?

*STB?

Syntax

*STB?

Description

Queries the condition register for the Status Byte register and returns a decimal value which corresponds to the binary-weighted sum of all bits set in the register. This query is similar to a Serial Poll but it is processed like any other instrument command. This is a read-only register and the bits are not cleared when you read the register.

Remarks

- The bit definitions for the Status Byte register are listed in "Status Byte register" on page 43.
- This query returns the same results as a Serial Poll but the "Master Summary" bit (bit 6) is not cleared if a Serial Poll has occurred.
- A power-on cycle will clear all bits in the condition register.

Example

The following query reads the condition register (bits 2 and 5 are set).

*STB?

IEEE-488.2 Common Commands

*TST?

Syntax

*TST?

Description

Initiates an internal self-test of the U8903A and returns a pass or fail indication. The self-test runs a series of tests and will take approximately 30 s to complete.

Remarks

- If one or more tests fail, 1 is returned and the errors are stored in the error queue. For a complete listing of the error messages related to self-test failures, refer to Chapter 3, "Error Messages". Use the SYSTem: ERRor? command to read the error queue.
- If all tests pass, 0 is returned.

NOTE

Do not operate the U8903A while the self-test is in progress as doing so might cause unexpected results.

Example

The following query performs a self-test and returns a pass or fail indication.

*TST?

*WAI

Syntax

*WAI

Description

The Wait-to-Continue (WAI) command causes the U8903A to wait until all pending operations have completed, before executing any other command.

Example

The following command waits until all pending operations have completed.

*WAI

*TRG

Syntax

*TRG

Description

This command is used in conjunction with the TRIGger:ANALyzer:SOURce, TRIGger:GRAPh:SOURce, TRIGger:DIGital:ANALyzer:SOURce, or TRIGger:DIGital:GRAPh:SOURce command to trigger the U8903A from the remote interface.

Remarks

• For analog module, use the TRIGger: ANALyzer: SOURce command in the analyzer mode or TRIGger: GRAPh: SOURce command in the graph mode to select the BUS trigger source.

IEEE-488.2 Common Commands

- For digital module, use the TRIGger:DIGital:ANALyzer:SOURce command in the analyzer mode or TRIGger:DIGital:GRAPh:SOURce command in the graph mode to select the BUS trigger source.
- After setting the trigger source, the U8903A must be set in the "wait-for-trigger" state. The *TRG command will not be accepted unless the U8903A is in the "wait-for-trigger" state.
- For analog module, use the INITiate[:IMMediate]:ANALyzer command in the analyzer mode. For the graph mode, use the INITiate[:IMMediate]:GRAPh command.
- For digital module, use the INITiate[:IMMediate]:DIGital:ANALyzer command in the analyzer mode. For the graph mode, use the INITiate[:IMMediate]:DIGital:GRAPh command.

Example

The following command sequence is used to trigger the U8903A in the analog analyzer mode.

TRIG: ANAL: SOUR BUS

INIT: ANAL

*TRG

SCPI Status System

This section describes the structure of the SCPI status system used by the U8903A. Each register group is made up of several low-level registers called Condition register, Event register, and Enable register which control the action of specific bits within the register group.

Condition register

A condition register continuously monitors the state of the U8903A. The bits in the condition register are updated in realtime and the bits are not latched or buffered. This is a read-only register and the bits are not cleared when you read the register. A query of the condition register returns a decimal value which corresponds to the binary-weighted sum of all bits set in that register.

Event register

An event register latches the various events from the changes in the condition register. There is no buffering in this register; while an event bit is set, subsequent events corresponding to that bit are ignored. This is a read-only register. Once a bit is set, it remains set until cleared by a query or clear status (*CLS) command. A query of this register returns a decimal value which corresponds to the binary-weighted sum of all bits set in that register.

Enable register

An enable register defines which bits in the event register will be reported to the Status Byte register group. You can write to or read from an enable register. A clear status (*CLS) command will not clear the enable register but it clears all bits in the event register. To enable bits in the enable register to be reported to the Status Byte register, you must write a decimal value which corresponds to the binary-weighted sum of the corresponding bits.

SCPI Status System

Status system diagram

The U8903A uses the Operation, Questionable, Standard Event, and Status Byte register groups to record a variety of instrument conditions. The relationship between various registers in the U8903A SCPI status system is shown below.

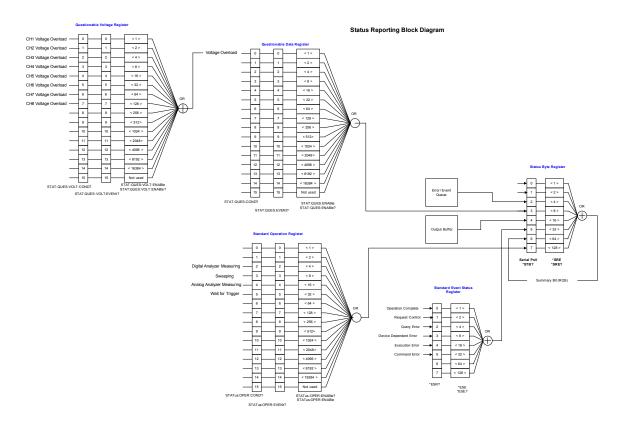


Figure 1-1 Status system diagram

Standard Operation register

This register record signals that occur during normal operation. The outputs of the Standard Operation register are logically-ORed into the OPERation summary bit (7) of the Status Byte register.

Bit definitions: Standard Operation register

Bit number	Decimal value	Definition
0 to 1 Not Used	Not Used	0 is returned
2 Measuring in Progress for Digital Analyzer		The U8903A is initiated, and is making, or about to make a measurement
3 Sweeping in Progress	8	The U8903A is performing sweep
4 Measuring in Progress for Analog Analyzer	16	The U8903A is initiated, and is making, or about to make a measurement
5 Waiting for Trigger	32	The U8903A is waiting for an external or bus trigger
6 to 15 Not Used	Not Used	0 is returned

The STATus: PRESet command will clear all bits in the NTR and enable registers.

Questionable Status registers

These registers record signals that indicate abnormal operation. The Questionable Data and Questionable Voltage registers are used for the U8903A. The outputs of the Questionable Voltage register are logically-ORed into the Voltage Overload bit (0) of the Questionable Data register. The outputs of the Questionable Data register are logically-ORed into the QUEStionable summary bit (3) of the Status Byte register.

SCPI Status System

Bit definitions: Questionable Data register

Bit number	Decimal value	Definition	
0 Voltage Overload	1	The voltage of one of the input signals is over the limit	
1 to 15 Not Used	Not Used	0 is returned	

Bit definitions: Questionable Voltage register

Bit number	Decimal value	Definition
0 Channel 1 Voltage Overload	1	The voltage of channel 1 is over the limit
1 Channel 2 Voltage Overload	2	The voltage of channel 2 is over the limit
2 Channel 3 Voltage Overload	4	The voltage of channel 3 is over the limit
3 Channel 4 Voltage Overload	8	The voltage of channel 4 is over the limit
4 Channel 5 Voltage Overload	16	The voltage of channel 5 is over the limit
5 Channel 6 Voltage Overload	32	The voltage of channel 6 is over the limit
6 Channel 7 Voltage Overload	64	The voltage of channel 7 is over the limit
7 Channel 8 Voltage Overload	128	The voltage of channel 8 is over the limit
8 to 15 Not Used	Not Used	0 is returned

Standard Event register

The Standard Event register reports the following types of instrument events: command syntax errors, command execution errors, device errors (self-test or calibration), query errors, or when an *OPC command is executed. All of these conditions can be reported in the Standard Event summary bit through the enable register.

Bit definitions: Standard Event register

Bit number	Decimal value	Definition
0 Operation Complete	1	All commands prior to and including *OPC have been executed
1 Not Used	Not Used	0 is returned
2 Query Error	4	The U8903A tried to read the output buffer but it was empty. Or, a new command line was received before a previous query has been read. Or, both the input and output buffers are full.
3 Device-Dependent Error	8	A self-test, calibration, or other device-specific error has occurred
4 Execution Error	16	A command execution error occurred
5 Command Error	32	A command syntax error occurred
6 to 7 Not Used	Not Used	0 is returned

The event register in the Standard Event is cleared when:

- you execute the clear status (*CLS) command
- querying the event register using the event status register (*ESR?) command

The Standard Event enable register is cleared when you execute the *ESE 0 command.

Status Byte register

The Status Byte register reports the conditions from the other status registers. Clearing an event register from one of the other registers will clear the corresponding bits in the Status Byte condition register.

Data that is waiting in the U8903A output buffer is immediately reported on the "Message Available" bit (bit 4).

SCPI Status System

Bit definitions: Status Byte register

Bit number	Decimal value	Definition
0 to 1 Not Used	Not Used	0 is returned
2 Error Queue	4	There is at least one error message in the error queue
3 Questionable Data Summary	8	One or more bits are set in the Questionable Data register (bits must be enabled in the enable register)
4 Message Available	16	Data is available in the U8903A output buffer
5 Event Status Byte Summary	32	One or more bits are set in the Standard Event register (bits must be enabled in the enable register)
6 Master Status Summary (Request for Service)	64	One or more bits are set in the Status Byte register (bits must be enabled in the enable register). Also used to indicate a request for service.
7 Standard Operation Summary	128	One or more bits are set in the Standard Operation register (bits must be enabled in the enable register)

The Status Byte condition register will be cleared when:

- you execute the clear status (*CLS) command
- you read the event register from one of the other registers, only the corresponding bits are cleared in the condition register

The Status Byte enable register is cleared when you execute the ${}^{\star}{\rm SRE}$ 0 command.

System Subsystem

SYSTem:ERRor[:NEXT]?

Syntax

SYSTem: ERRor[:NEXT]?

Description

Returns the error number and its corresponding message string from the U8903A error queue. A record of up to 30 errors can be stored in the U8903A error queue. The format of the response is:

```
<error number>, "<error string>"
```

where the error number is defined in Chapter 3, "Error Messages".

Remarks

- Errors are retrieved in the first-in, first-out (FIFO) order where the first error returned is the first error that has been stored.
- If more than 30 errors have occurred, the last error stored in the queue (the most recent error) is replaced with -350,"Queue overflow". No additional errors are stored until you remove errors from the queue. If no error occur when you read the error queue, the U8903A responds with 0,"No error".
- The error queues are cleared by the clear status (*CLS) command and when power is cycled. The errors are also cleared when you read the error queue. The error queue is not cleared by a factory reset (*RST) or SYSTem: PRESet command.

System Subsystem

• The command reads and clears one error string from the error queue. The error string may contain up to 255 characters and consists of an error number and an error string enclosed in double quotes. For example:

-113, "Undefined header"

Example

The following query reads and clears one error.

SYST: ERR?

Typical response: -101, "Invalid character"

SYSTem:DATE

Syntax

SYSTem:DATE <yyyy>, <mm>, <dd>

SYSTem: DATE?

Description

Sets the date of the realtime clock in year (yyyy), month (mm), and day (dd) format. The query returns comma-separated values that correspond to the year, month, and day.

Parameters

ltem	Туре	Range of values	Default value
уууу	Numeric	A 4-digit integer representing the year. The value is within the range of 2000 to 2099.	Required parameter
mm	Numeric	An integer from 1 to 12	Required parameter
dd	Numeric	An integer from 1 to 31	Required parameter

Examples

The following command sets the date (April 1, 2008).

SYST:DATE 2008, 4, 1

The following query returns the date.

SYST: DATE?

Typical response: 2008, 4, 1

SYSTem:TIME

Syntax

SYSTem:TIME <hh>, <mm>, <ss>

SYSTem:TIME?

Description

Sets the realtime clock in hours (hh), minutes (mm), and seconds (ss). The query returns comma-separated values that correspond to the hour, minute, and seconds.

Parameters

ltem	Туре	Range of values	Default value
hh	Numeric	An integer from 0 to 23	Required parameter
mm	Numeric	An integer from 0 to 59	Required parameter
SS	Numeric	An integer from 0 to 59	Required parameter

System Subsystem

Examples

The following command sets the time.

SYST:TIME 13, 30, 10

The following query returns the time.

SYST:TIME?

Typical response: 13,30,10

SYSTem: VERSion?

Syntax

SYSTem: VERSion?

Description

Returns the SCPI standard version with which the U8903A is in compliance. The U8903A complies with the rules and conventions of the indicated SCPI standard version. The response format is in the form of XXXX.Y, where XXXX represents the year of the version and Y represents the version number for that year.

Example

The following query returns the SCPI version.

SYST: VERS?

Typical response: 1999.0

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess

Syntax

SYSTem:COMMunicate:GPIB[:SELF]:ADDRess <address>
SYSTem:COMMunicate:GPIB[:SELF]:ADDRess?

Description

Assigns the U8903A GPIB (IEEE-488) address. Each device on the GPIB interface must have a unique address.

Parameter

Item	Туре	Range of values	Default value
address	Numeric	0 to 30	28

Remarks

- The factory GPIB address setting is 28.
- Your PC GPIB interface card has its own address. Avoid using the PC address for any instrument on the interface bus.
- The GPIB address is stored in nonvolatile memory, and does not change when power has been turned off, after a factory reset (*RST command), or after an instrument preset (SYSTem: PRESet command).

Examples

The following command sets the GPIB address to 28.

SYST:COMM:GPIB:ADDR 28

The following query returns the GPIB address.

SYST: COMM: GPIB: ADDR?

SYSTem:COMMunicate:LAN:ADDRess

Syntax

SYSTem:COMMunicate:LAN:ADDRess <address>
SYSTem:COMMunicate:LAN:ADDRess?

Description

Assigns a static Internet Protocol (IP) address for the U8903A. The query returns the IP address in the form of "A.B.C.D".

Parameter

Item	Туре	Range of values	Default value
address	String	Up to 15 characters formatted as A.B.C.D where A, B, C, and D is within the range of 0 to 255 each (no embedded spaces)	Required parameter

Remarks

- Sending this command will automatically disable the DHCP and switch to static IP.
- The IP address is stored in nonvolatile memory, and does not change when power has been turned off, after a factory reset (*RST command), or after an instrument preset (SYSTem: PRESet command).

Examples

The following command sets the IP address.

SYST:COMM:LAN:ADDR "169.254.149.35"

The following query returns the IP address in double quotes.

SYST: COMM: LAN: ADDR?

Typical response: "169.254.149.35"

SYSTem:COMMunicate:LAN:DGATeway

Syntax

SYSTem:COMMunicate:LAN:DGATeway <gateway>
SYSTem:COMMunicate:LAN:DGATeway?

Assigns the static default gateway address. The query returns the default gateway address in the form of "A.B.C.D".

Parameter

Description

Item	Туре	Range of values	Default value
gateway	String	Up to 15 characters formatted as A.B.C.D where A, B, C, and D is within the range of 0 to 255 each (no embedded spaces)	Required parameter

Remarks

- Sending this command will automatically disable the DHCP and switch to static default gateway.
- The default gateway address is stored in nonvolatile memory, and does not change when power has been turned off, after a factory reset (*RST command), or after an instrument preset (SYSTem: PRESet command).

Examples

The following command sets the default gateway.

SYST:COMM:LAN:DGAT "255.255.20.11"

The following query returns the default gateway address in double quotes.

SYST: COMM: LAN: DGAT?

Typical response: "255.255.20.11"

System Subsystem

SYSTem: COMMunicate: LAN: HNAMe?

Syntax

SYSTem: COMMunicate: LAN: HNAMe?

Description

Queries the LAN hostname and returns an ASCII string enclosed in double quotes.

Example

The following query returns the hostname of the U8903A in double quotes.

SYST: COMM: LAN: HNAM?

Typical response: "U8903A"

SYSTem:COMMunicate:LAN:SMASk

Syntax

SYSTem:COMMunicate:LAN:SMASk <subnet mask>

SYSTem:COMMunicate:LAN:SMASk?

Description

Sets the static subnet mask address. The query returns the subnet mask address in the form of "A.B.C.D".

Parameter

Item	Туре	Range of values	Default value
subnet mask	String	Up to 15 characters formatted as A.B.C.D where A, B, C, and D is within the range of 0 to 255 each (no embedded spaces)	Required parameter

Remarks

- Sending this command will automatically disable the DHCP and switch to static subnet mask.
- The subnet mask address is stored in nonvolatile memory, and does not change when power has been turned off, after a factory reset (*RST command), or after an instrument preset (SYSTem: PRESet command).

Examples

The following command sets the subnet mask.

SYST:COMM:LAN:SMAS "255.255.20.11"

The following query returns the subnet mask address in double quotes.

SYST: COMM: LAN: SMAS?

Typical response: "255.255.20.11"

SYSTem:COMMunicate:LAN:MAC?

Syntax

SYSTem: COMMunicate: LAN: MAC?

Description

Reads the U8903A Media Access Control (MAC) address, also known as either the link-layer address, Ethernet (station) address, LANIC ID, or hardware address. This is an unchangeable 48-bit address assigned by the manufacturer to each unique Internet device. The query returns an ASCII string enclosed in double quotes. The MAC address is represented as 12 hexadecimal characters.

NOTE

Your network administrator may need the MAC address if they are assigning a static IP address for this device.

Remarks

- The U8903A MAC address is set at the factory and cannot be changed.
- The MAC address is stored in nonvolatile memory, and does not change when power has been turned off, after a factory reset (*RST command), or after an instrument preset (SYSTem: PRESet command).

Example

The following query returns the MAC address in double quotes.

SYST: COMM: LAN: MAC?

Typical response: "0003D3041075"

SYSTem:COMMunicate:LAN:DHCP:ENABled

Syntax

SYSTem: COMMunicate: LAN: DHCP: ENABled

Description

Enables the Dynamic Host Configuration Protocol (DHCP) for the U8903A. When the DHCP is enabled (factory setting), the U8903A will try to obtain an IP address from a DHCP server. If a DHCP server is found, it will assign a dynamic IP address, subnet mask, and default gateway to the U8903A.

Example

The following command enables the DHCP.

SYST: COMM: LAN: DHCP: ENAB

SYSTem: CHANnel?

Syntax

SYSTem: CHANnel?

Description

Queries the available channels in the U8903A to determine if the channel hardware card is available or in good condition. This query returns comma-separated channel numbers of the available channels in the U8903A.

Remark

If a hardware card is available but in bad condition, this query will not return the channel number for that particular channel.

System Subsystem

Example

The following query returns the channel numbers of the available channels which are in good condition.

SYST: CHAN?

Typical response: 1,2

SYSTem:PRESet

Syntax

SYSTem: PRESet

Description

Presets the U8903A to its factory default settings and deletes all user-defined files.

Example

The following command presets the U8903A.

SYST: PRES

SYSTem:RESet[:MODE]

Syntax

SYSTem:RESet[:MODE] <system mode>

Description

Resets the customized settings of the specified U8903A system mode to the default settings.

Parameter

Item	Туре	Range of values	Default value
system mode	Discrete	AANalyzer, AGENerator, SWEep, GRAPh, DANalyzer, or DGENerator	Required parameter

Remarks

- This command resets the customized settings of the selected system mode excluding the stored files, I/O configuration, and common system settings.
- For the analyzer mode, the measurement bandwidth, measurement time, and trigger source will also be reset to the default settings.

Example

The following command resets the analyzer mode.

SYST: RES AAN

SYSTem: RESet: CHANnel

Syntax

SYSTem:RESet:CHANnel <system mode>, (@<channel>)

Description

Resets the customized settings of the U8903A system mode for the specified channel to the default settings.

System Subsystem

Parameters

Item	Туре	Range of values	Default value
system mode	Discrete	AANalyzer, AGENerator, or DANalyzer	Required parameter
channel	Numeric	1 or 2	Required parameter

Remarks

- This command resets the customized settings of the system mode for the selected channel excluding the stored files, I/O configuration, and common system settings.
- For the analyzer mode, the measurement bandwidth, measurement time, and trigger source will not be reset to the default settings.

Example

The following command resets channel 1 of the analyzer mode.

SYST:RES:CHAN AAN, (@1)

SYSTem:LEGacy:MODE

Syntax

SYSTem:LEGacy:MODE <state>

SYSTem: LEGacy: MODE?

Description

Enables or disables the legacy mode. The legacy mode will enable the U8903A to emulate the HP8903B and accept HP8903B commands.

Parameter

Item	Туре	Range of values	Default value
state	Boolean	OFF(0) or ON(1)	ON

Remark

Some of the HP8903B commands are not supported.

Examples

The following command enables the legacy mode.

SYST:LEG:MODE ON

The following query returns the legacy mode state.

SYST:LEG:MODE?

Typical response: 1

SYSTem:LEGacy:CHANnel

Syntax

SYSTem:LEGacy:CHANnel <channel>

SYSTem: LEGacy: CHANnel?

Description

Sets the channel for the U8903A to emulate the HP8903B.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	1

System Subsystem

Examples

The following command sets channel 1 as the channel to emulate HP8903B in legacy mode.

SYST:LEG:CHAN 1

The following query returns the legacy mode channel.

SYST: LEG: CHAN?

Typical response: 1

SYSTem:DISPlay:IMAGe?

Syntax

SYSTem:DISPlay:IMAGe? <invert color>

Description

Prints the screen and retrieves the print screen image data. Parameter invert color is an optional parameter to invert the background color of the graph view. Setting the parameter invert color to 1 will invert the background color from black to white.

Parameter

Item	Туре	Range of values	Default value
invert color	Boolean	0 or 1	0

Remarks

- The color inversion is only applicable to black background color image in graph view.
- Inverting the background color will take quite a significant amount of time.
- The print screen image returned is in JPEG format.

Examples

The following command retrieves the print screen image data without any background color inversion.

SYST:DISP:IMAG? 0

The following command retrieves the print screen image data with the background color inverted to white.

SYST:DISP:IMAG? 1

SYSTem: REMote

Syntax

SYSTem: REMote

Description

Activates Remote mode. Locks the U8903A front panel keypad excluding the Local key and displays "Remote" on the LCD display. Local front panel operation can be enabled by pressing the Local key.

Remark

Remote mode can also be activated by sending any SCPI commands.

Example

The following command returns the U8903A from Local mode to Remote mode.

SYST: REM

System Subsystem

SYSTem:RWLock

Syntax

SYSTem: RWLock

Description

Activates Remote with Lock mode. Locks all the U8903A front panel keypad including the Local key and displays "Remote", and a "keypad lock symbol" on the LCD display. The U8903A cannot return to manual control from the front panel. This state can be cleared by sending the command "SYSTem:LOCal".

Example

The following command locks all the U8903A front panel keys.

SYST: RWL

SYSTem:LOCal

Syntax

SYSTem:LOCal

Description

Unlocks all the U8903A front panel keypad including the Local key and enables the U8903A to be controlled from the front panel.

Example

The following command returns the U8903A from Remote mode or Remote with Lock mode to Local mode.

SYST:LOC

SYSTem:DIGital:CTYPe?

Syntax

SYSTem: DIGital: CTYPe?

Description

Queries the installed digital audio type in the U8903A and returns either AES, DSI, or ALL.

Example

The following query returns the installed digital audio type.

SYST:DIG:CTYP?

Typical response: ALL

SYSTem: UPDate: FIRMware?

Syntax

SYSTem: UPDate: FIRMware? < firmware list>

Description

Starts the U8903A firmware update process remotely and returns the firmware update process state as 0 if the update process is not completed, or 1 if the update process is completed successfully.

NOTE

Ensure that all measurement or waveform generation are stopped before sending this command.

APPL Application firmware

ACRd1 Analog measurement card 1

System Subsystem

ADSP	Analog DSP
ACON	Analog controller
DGEN	Digital generator
DAN	Digital analyzer
DCON	Digital controller

Parameter

Item	Туре	Range of values	Default value
firmware list	String	One or more firmware files.	Required
		For example:	parameter
		"APPL;\Storage 1\ NK_R2.10.1.0.jel"	
		"ACARd1;\Storage 1\filter.ldr"	
		"ADSP;\Storage 1\FFT.ldr"	
		"ACON;\Storage 1\Master.ldr"	
		"DGEN;\Storage 1\ DGenerator.bin"	
		"DAN;\Storage 1\DAnalyzer.ldr"	
		"DCON;\Storage 1\ DController.bin"	

Remarks

- Multiple firmware files are separated by commas.
- Each firmware list parameter must be sent in the format of <type>;<file path> where ';' is used to separate the firmware type and the file path.
- Before starting the update, ensure that the respective firmware files are accessible.
- The time required to complete this query varies according to the firmware type.

Firmware type	Time required (seconds)
APPL	320 to 350
ACRd1	15 to 20
ADSP	8 to 10
ACON	10 to 15
DGEN	4 to 6
DAN	12 to 15
DCON	35 to 40

Example

The following query updates the firmware for the application, analog DSP, and digital analyzer with the respective firmware files (NK_R2.10.1.0.jel, FFT.ldr, and DAnalyzer.ldr) stored in the external storage.

```
SYST:UPD:FIRM? "APPL;\Storage 1\
NK_R2.10.1.0.jel", "ADSP;\Storage 1\FFT.ldr",
"DAN;\Storage 1\DAnalyzer.ldr"
```

Typical response: 1

SYSTem: UPDate: HELP?

Syntax

SYSTem: UPDate: HELP? < filename>

Description

Starts the U8903A help file update process remotely and returns the help file update process state as 0 if the update process is not completed, or 1 if the update process is completed successfully.

System Subsystem

Parameter

Item	Туре	Range of values	Default value
filename	String	Full file path in quoted string. For example, "\Storage 1\ u8903a2.10.1.0.cmp"	Required parameter

Remarks

- Before starting the update, ensure that the help files are accessible.
- The time required to complete this query varies according to the help file size. Typically, the query requires 7 to 9 seconds to complete the update process.

Example

The following query updates the help files with the u8903a2.10.1.0.cmp file stored in the external storage.

SYST:UPD:HELP? "\Storage 1\u8903a2.10.1.0.cmp"

Typical response: 1

Output Subsystem

The Output subsystem provides the commands to program the U8903A generator output configuration.

OUTPut:TYPE

Syntax

```
OUTPut:TYPE <type>, (@<channel list>)
OUTPut:TYPE? (@<channel list>)
```

Description

Sets the generator output connection for the specified channel(s). The query returns the output connection type of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
type	Discrete	BALanced, UNBalanced, or COMMon	UNBalanced
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

You are required to reconfigure the output impedance each time you change the output connection.

Output Subsystem

Examples

The following commands set the generator outputs for channel 1 and 2 to Unbalanced and Balanced respectively.

```
OUTP:TYPE UNB, (@1)
OUTP:TYPE BAL, (@2)
```

The following query returns the output connection types of channel 1 and 2.

```
OUTP: TYPE? (@1,2)
```

Typical response: UNB, BAL

OUTPut:IMPedance

Syntax

```
OUTPut:IMPedance <impedance>, (@<channel list>)
OUTPut:IMPedance? (@<channel list>)
```

Description

Sets the generator output impedance for the specified channel(s). The query returns the output impedance of the selected channel(s). Multiple responses are separated by commas.

The output impedance selection is described as follows.

IMP50	Output impedance is 50 Ω for the Unbalanced output connection
IMP100	Output impedance is 100 Ω for the Balanced or Common output connection
IMP600	Output impedance is 600 Ω for the UnBalanced, Balanced, or Common output connection

Parameters

Item	Туре	Range of values	Default value
impedance	Discrete	IMP100 or IMP600 (Balanced or Common output connection) IMP50 or IMP600 (Unbalanced output connection)	IMP600
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

You must set the output connection type before configuring the output impedance.

Examples

The following commands set the generator output impedance for channel 1 and 2 to 50 Ω and 100 Ω respectively. Assume that the output connection for channel 1 has been set to Unbalanced, and channel 2 to Balanced.

```
OUTP:IMP IMP50, (@1)
OUTP:IMP IMP100, (@2)
```

The following query returns the output impedance of channel 1 and 2.

```
OUTP: IMP? (@1,2)
```

Typical response: IMP50, IMP100

Output Subsystem

OUTPut:STATe

Syntax

```
OUTPut:STATe <state>, (@<channel list>)
OUTPut:STATe? (@<channel list>)
```

Description

Enables or disables the generator output for the specified channel(s). The query returns the output state of the selected channel(s) as 0 if the output state is OFF, or 1 if the output state is ON. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value				
state	Boolean	OFF(0) or ON(1)	OFF				
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter				

Remark

You must configure the output connection and impedance before setting the output state.

Examples

The following commands enable the channel 1 generator output but disable the output for channel 2.

```
OUTP:STAT ON, (@1)
OUTP:STAT OFF, (@2)
```

The following query returns the output states of channel 1 and 2.

```
OUTP: STAT? (@1,2)

Typical response: 1,0
```

OUTPut:DIGital:TYPE

Syntax

OUTPut:DIGital:TYPE <type>
OUTPut:DIGital:TYPE?

Description

Sets the digital generator AES3/SPDIF output connection. When a connection type is selected, the AES3/SPDIF output will be turned on. The query returns the AES3/SPDIF output connection type.

Parameter

Item	Туре	Range of values	Default value
type	Discrete	BALanced or UNBalanced	UNBalanced

Examples

The following command sets the digital generator AES3/SPDIF output to Balanced.

OUTP:DIG:TYPE BAL

The following query returns the AES3/SPDIF output connection type.

OUTP:DIG:TYPE?

Typical response: BAL

Output Subsystem

OUTPut:DIGital:SRATe

Syntax

OUTPut:DIGital:SRATe <sampling rate> [<unit>]
OUTPut:DIGital:SRATe?

Description

Sets the sampling rate of the digital generator output signals. The query returns the sampling rate of the digital generator output signals.

Parameter

Item	Туре	Range of values	Default value
sampling rate	Numeric	6.75kHz to 400kHz	48kHz

Remarks

- For AES3/SPDIF output connection, the range is limited to 28 kHz to 192 kHz.
- The AES3/SPDIF output will be turned off, if the sampling rate exceeds the range.

Examples

The following command sets the sampling rate of the digital generator output signal to 32 kHz.

OUTP:DIG:SRAT 32kHz

The following query returns the sampling rate of the digital generator output signal.

OUTP:DIG:SRAT?

Typical response: 3.200000E+04

OUTPut:DIGital:STATe

Syntax

```
OUTPut:DIGital:STATe <state>, (@<channel list>)
OUTPut:DIGital:STATe? (@<channel list>)
```

Description

Enables or disables the digital generator output for the specified channel(s). The query returns the output state of the selected channel(s) as 0 if the output state is OFF, or 1 if the output state is ON. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value				
state	Boolean	OFF(0) or ON(1)	OFF				
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter				

Examples

The following commands enable the channel 1 digital generator output but disable the output for channel 2.

```
OUTP:DIG:STAT ON, (@D1)
OUTP:DIG:STAT OFF, (@D2)
```

The following query returns the output states of channel 1 and 2.

```
OUTP:DIG:STAT? (@D1,D2)
```

Typical response: 1,0

Output Subsystem

OUTPut:DIGital:AUDio[:ENCoding]:FORMat

Syntax

OUTPut:DIGital:AUDio[:ENCoding]:FORMat <format>
OUTPut:DIGital:AUDio[:ENCoding]:FORMat?

Description

Sets the audio encoding format of the embedded digital generator audio signals. The query returns the audio encoding format.

LPCM Linear Pulse Code Modulation

ULAW μ -Law encoding format ALAW A-Law encoding format

Parameter

ltem	Туре	Range of values	Default value				
format	Discrete	LPCM, ULAW, or ALAW	LPCM				

Examples

The following command sets the encoding format of the digital generator to A-Law.

OUTP:DIG:AUD:FORM ALAW

The following query returns the encoding format.

OUTP:DIG:AUD:FORM?

Typical response: ALAW

OUTPut:DIGital:AES:STATe

Syntax

OUTPut:DIGital:AES:STATe <state>
OUTPut:DIGital:AES:STATe?

Description

Enables or disables the AES3/SPDIF output for the digital generator. The query returns the AES3/SPDIF output state as 0 if the output state is OFF, or 1 if the output state is ON.

Parameter

Item	Туре	Range of values	Default value				
state	Boolean	OFF(0) or ON(1)	OFF				

Remark

The AES3/SPDIF output can also be enabled by setting the AES3/SPDIF output connection type using the OUTPut:DIGital:TYPE command.

Examples

The following command enables the AES3/SPDIF output.

OUTP:DIG:AES:STAT ON

The following query returns the output state of the AES3/SPDIF output.

OUTP: DIG: AES: STAT?

Typical response: 1

Output Subsystem

OUTPut:DIGital:AES:VOLTage

Syntax

OUTPut:DIGital:AES:VOLTage <level>
OUTPut:DIGital:AES:VOLTage?

Description

Sets the output logic level for the AES3/SPDIF interface in Peak-to-Peak Voltage (Vpp). The query returns the output logic level of the AES3/SPDIF interface.

Parameters

ltem	Туре	Range of values	Default value
level	Numeric	 0.3 Vpp to 5.1 Vpp (Balanced output) 0.3 Vpp to 2.5 Vpp (Unbalanced output) 	2.5 Vpp

Examples

The following command sets the output logic level to 1.5 Vpp.

OUTP:DIG:AES:VOLT 1.5

The following query returns the output logic level.

OUTP:DIG:AES:VOLT?

Typical response: 1.500000E+00

OUTPut:DIGital:AES:AUDio:RESolution

Syntax

OUTPut:DIGital:AES:AUDio:RESolution <resolution>
OUTPut:DIGital:AES:AUDio:RESolution?

Description

Sets the audio resolution or bit depth for the AES3/SPDIF interface audio data to be generated. The query returns the audio resolution.

Parameter

Item	Туре	Range of values	Default value
resolution	Numeric	8 to 24	24

Examples

The following command sets the audio resolution to 20 bits.

OUTP:DIG:AES:AUD:RES 20

The following query returns the audio resolution.

OUTP:DIG:AES:AUD:RES?

Typical response: 20

OUTPut:DIGital:AES:AUDio:VALidity

Syntax

OUTPut:DIGital:AES:AUDio:VALidity <validity>
OUTPut:DIGital:AES:AUDio:VALidity?

Description

Sets the validity bit (bit 28) of the AES3/SPDIF interface output. When the validity bit is set to 0, the data is valid and is normally a linear coded PCM audio, and when it is set to 1, the data is invalid or may be a valid compressed audio. The query returns the validity bit value in integer.

Parameter

ltem	Туре	Range of values	Default value				
validity	Numeric	0 or 1	0				

Examples

The following command sets the AES3/SPDIF interface output validity bit to 1.

OUTP:DIG:AES:AUD:VAL 1

The following query returns the AES3/SPDIF interface output validity bit value.

OUTP:DIG:AES:AUD:VAL?

Typical response: 1

OUTPut:DIGital:AES[:PROTocol]:MODE

Syntax

```
OUTPut:DIGital:AES[:PROTocol]:MODE <mode>,
  (@<channel list>)

OUTPut:DIGital:AES[:PROTocol]:MODE?
  (@<channel list>)
```

Description

Sets the first bit in the channel status block of the AES3/SPDIF interface to indicate the mode. The first bit of the channel status block is 0 if the mode is CONSumer, or 1 if the mode is PROFessional. The query returns the channel status block mode.

Parameters

Item	Туре	Range of values	Default value			
mode	Discrete	PROFessional or CONSumer	CONSumer			
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter			

Examples

The following command sets the channel status block mode for channel 1 to Consumer.

```
OUTP:DIG:AES:MODE CONS, (@D1)
```

The following query returns the channel status block mode of channel 1.

```
OUTP:DIG:AES:MODE? (@D1)
```

Typical response: CONS

OUTPut:DIGital:AES[:PROTocol]:CSTatus:DATA

Syntax

OUTPut:DIGital:AES[:PROTocol]:CSTatus:DATA
<data>, (@<channel list>)
OUTPut:DIGital:AES[:PROTocol]:CSTatus:DATA?
(@<channel list>)

Description

Sets the 24 bytes array of the channel status bits in hexadecimal characters for the specified channel(s). The query returns the channel status bits 24 bytes array in hexadecimal characters.

Parameters

Item	Туре	Range of values	Default value				
data	Hex						
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter				

Remarks

- #H must be added in front of the bytes array to indicate that the array is in hexadecimal characters.
- The channel status bits are arranged in the format of byte-0 to byte-23. For example, the value #H2F2C6CFBD8005538393044555431B0E704008E15530 10000 is arranged as follows.
- In Professional mode, the byte-23 (CRCC) is only for query and not modifiable. The byte-23 value will be updated with the auto-computed CRCC value.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
2F	2C	6C	FB	D8	00	55	38	39	30	44	55	54	31	В0	E7	04	00	8E	15	53	01	00	00

Examples

The following command sets the 24 bytes array of the channel status bits for channel 1.

```
OUTP:DIG:AES:CST:DATA
#H2F2C6CFBD8005538393044555431B0E704008E15530100
00, (@D1)
```

The following query returns the 24 bytes array of the channel status bits of channel 1.

```
OUTP:DIG:AES:CST:DATA? (@D1)
```

Typical response:

#H2F2C6CFBD8005538393044555431B0E704008E15530100

OUTPut:DIGital:AES[:PROTocol]:CSTatus:BYTE

Syntax

```
OUTPut:DIGital:AES[:PROTocol]:CSTatus:BYTE
<number>, <value>, (@<channel list>)

OUTPut:DIGital:AES[:PROTocol]:CSTatus:BYTE?
<number>, (@<channel list>)
```

Description

Sets a particular byte of the channel status bits for the specified channel(s). The query returns the byte(s) value in hexadecimal characters.

Output Subsystem

Parameters

Item	Туре	Range of values	Default value
number	Numeric	0 to 23	0
value	Hex	0 to FF	0
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- #H must be added in front of the byte value to indicate that the value is in hexadecimal characters.
- The channel status bits are arranged in the format of byte-0 to byte-23. For example, the value #H2F2C6CFBD8005538393044555431B0E704008E15530 10000 is arranged as follows.
- In Professional mode, the byte-23 (CRCC) is only for query and not modifiable. The byte-23 value will be updated with the auto-computed CRCC value.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
2F	2C	6C	FB	D8	00	55	38	39	30	44	55	54	31	В0	E7	04	00	8E	15	53	01	00	00

Examples

The following command sets the byte 2 of the channel status bits for channel 1 to 6F.

OUTP:DIG:AES:CST:BYTE 2, #H6F, (@D1)

The following query returns the byte 2 of the channel status bits of channel 1.

OUTP:DIG:AES:CST:BYTE? 2, (@D1)

Typical response: #H6F

OUTPut:DIGital:AES[:PROTocol]:CSTatus:FIELd

Syntax

```
OUTPut:DIGital:AES[:PROTocol]:CSTatus:FIELd
<name>, <value>, (@<channel list>)
OUTPut:DIGital:AES[:PROTocol]:CSTatus:FIELd?
<name>, (@<channel list>)
```

Description

Sets the channel status bits data of a specified field name for the specified channel(s). The query returns the data of the channel status bits data of a specified field name.

Parameters

Item	Туре	Range of values	Default value
name	String	Refer to "Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names" on page 594	
value	String	Refer to "Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names" on page 594	
channel list Discrete		One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- The field name is not case sensitive.
- The field value is case sensitive.
- For Word Length, Channel Number, and Multichannel Mode, there is a condition before the field value can be set. Refer to "Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names" on page 594 for more information.

Output Subsystem

 Before setting the respective fields or querying, ensure that the correct mode is set.

Examples

The following command sets the field value of "Category Code" for channel 1 to "Musical Instrument".

```
OUTP:DIG:AES:CST:FIEL "Category Code", "Musical Instrument", (@D1)
```

The following query returns the field value of "Category Code" for channel 1.

```
OUTP:DIG:AES:CST:FIEL? "Category Code", (@D1)
```

Typical response: Musical Instrument

OUTPut:DIGital:AES[:PROTocol]:USTatus:DATA

Syntax

```
OUTPut:DIGital:AES[:PROTocol]:USTatus:DATA
<data>, (@<channel list>)
OUTPut:DIGital:AES[:PROTocol]:USTatus:DATA?
(@<channel list>)
```

Description

Sets the 24 bytes array of the user status bits in hexadecimal characters for the specified channel(s). The query returns the user status bits 24 bytes array in hexadecimal characters.

Parameters

Item	Туре	Range of values	Default value
data	Hex		
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- #H must be added in front of the bytes array to indicate that the array is in hexadecimal characters.
- The channel status bits are arranged in the format of byte-0 to byte-23. For example, the value #H2F2C6CFBD8005538393044555431B0E704008E15530 10000 is arranged as follows.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
2F	2C	6C	FB	D8	00	55	38	39	30	44	55	54	31	В0	E7	04	00	8E	15	53	01	00	00

Examples

The following command sets the 24 bytes array of the user status bits for channel 1.

OUTP:DIG:AES:UST:DATA #H2F2C6CFBD8005538393044555431B0E704008E15530100 00, (@D1)

The following query returns the 24 bytes array of the user status bits of channel 1.

OUTP:DIG:AES:UST:DATA? (@D1)

Typical response:

#H2F2C6CFBD8005538393044555431B0E704008E15530100

Output Subsystem

OUTPut:DIGital:AES[:PROTocol]:USTatus:BYTE

Syntax

OUTPut:DIGital:AES[:PROTocol]:USTatus:BYTE
<number>, <value>, (@<channel list>)
OUTPut:DIGital:AES[:PROTocol]:USTatus:BYTE?
<number>, (@<channel list>)

Description

Sets a particular byte of the user status bits for the specified channel(s). The query returns the byte(s) value in hexadecimal characters.

Parameters

Item	Туре	Range of values	Default value
number	Numeric	0 to 23	0
value	Hex	0 to FF	0
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- #H must be added in front of the bytes value to indicate that the value is in hexadecimal characters.
- The channel status bits are arranged in the format of byte-0 to byte-23. For example, the value #H2F2C6CFBD8005538393044555431B0E704008E15530 10000 is arranged as follows.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
2F	2C	6C	FB	D8	00	55	38	39	30	44	55	54	31	В0	E7	04	00	8E	15	53	01	00	00

Examples

The following command sets the byte 2 of the user status bits for channel 1 to 6F.

```
OUTP:DIG:AES:UST:BYTE 2, #H6F, (@D1)
```

The following query returns the byte 2 of the user status bits of channel 1.

```
OUTP:DIG:AES:UST:BYTE? 2, (@D1)
```

Typical response: #H6F

OUTPut:DIGital:DSI:VOLTage

Syntax

```
OUTPut:DIGital:DSI:VOLTage <level>
OUTPut:DIGital:DSI:VOLTage?
```

Description

Sets the output logic level for the digital serial interface (DSI) in Volts (V). The query returns the output logic level of the DSI.

Parameter

Item	Туре	Range of values	Default value
level	Numeric	1.2 V to 3.3 V	2.5 V

Examples

The following command sets the output logic level to 1.5 V.

OUTP:DIG:DSI:VOLT 1.5

The following query returns the output logic level.

OUTP:DIG:DSI:VOLT?

Typical response: 1.500000E+00

Output Subsystem

OUTPut:DIGital:DSI:AUDio:RESolution

Syntax

OUTPut:DIGital:DSI:AUDio:RESolution <resolution>
OUTPut:DIGital:DSI:AUDio:RESolution?

Description

Sets the audio resolution or bit depth for the DSI interface audio data to be generated. The query returns the audio resolution.

Parameter

Item	Туре	Range of values	Default value
resolution	Numeric	8 to 24	24

Remark

The audio resolution must be less than or equal to the word length.

Examples

The following command sets the audio resolution to 20 bits.

OUTP:DIG:DSI:AUD:RES 20

The following query returns the audio resolution.

OUTP:DIG:DSI:AUD:RES?

Typical response: 20

OUTPut:DIGital:DSI:AUDio:WLENgth

Syntax

OUTPut:DIGital:DSI:AUDio:WLENgth <length>
OUTPut:DIGital:DSI:AUDio:WLENgth?

Description

Sets the word length for the DSI interface. The query returns the word length.

Parameter

Item	Туре	Range of values	Default value
length	Numeric	8 to 32	32

Remarks

- The word length must be greater or equal to the audio resolution.
- Refer to "Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface" on page 597 for the range of word length that can be set with different DSI multiplier and sampling rate.
- When setting the word length, the error message,
 -221,"Settings conflict..." may be generated. This error message can be ignored as this is notify that the word length or multiplier is auto adjusted to the nearest allowable value due to the settings conflict.

Examples

The following command sets the word length to 20 bits.

OUTP:DIG:DSI:AUD:WLEN 20

The following query returns the word length.

OUTP: DIG: DSI: AUD: WLEN?

Typical response: 20

OUTPut:DIGital:DSI:DATA:FORMat

Syntax

OUTPut:DIGital:DSI:DATA:FORMat <format>
OUTPut:DIGital:DSI:DATA:FORMat?

Description

Sets the format for the DSI interface audio data to be generated. The query returns the format for the DSI interface audio data.

LEFT	Left justified. The active data bits are filled to the left edge of the data word.
RIGHt	Right justified. The active data bits are filled to the right edge of the data word.
I2S	I2S format. The word clock is low for the first channel (left channel) and high for the second channel (right channel)
DSP	The period of the word clock is only 1 bit of the bit clock and the data is 1 bit clock delay from the beginning of the word clock.

Parameter

Item	Туре	Range of values	Default value
format	Discrete	LEFT, RIGHt, I2S, or DSP	LEFT

Examples

The following command sets the DSI data format to right.

OUTP:DIG:DSI:DATA:FORM RIGH

The following query returns the DSI data format.

OUTP:DIG:DSI:DATA:FORM?

Typical response: RIGH

OUTPut:DIGital:DSI:MCLK:STATe

Syntax

OUTPut:DIGital:DSI:MCLK:STATe <state>
OUTPut:DIGital:DSI:MCLK:STATe?

Description

Enables or disables the DSI interface master clock. The query returns the DSI interface master clock state as 0 if the master clock state is OFF, or 1 if the master clock state is ON.

Parameter

ltem	Туре	Range of values	Default value
state	Boolean	OFF(0) or ON(1)	ON

Examples

The following command disables the DSI master clock.

OUTP:DIG:DSI:MCLK:STAT OFF

The following query returns the DSI master clock state.

OUTP:DIG:DSI:MCLK:STAT?

OUTPut:DIGital:DSI:MCLK:MULTiplier

Syntax

OUTPut:DIGital:DSI:MCLK:MULTiplier <multiplier>
OUTPut:DIGital:DSI:MCLK:MULTiplier?

Description

Sets the multiplier that is used to determine the master clock rate. The master clock rate is based on the output sampling frequency and multiplier values. The query returns the multiplier value.

Parameter

Item	Туре	Range of values	Default value
multiplier	Numeric	Refer to "Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface" on page 597	128

Remark

Refer to "Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface" on page 597 for the range of multiplier that can be set with different DSI word length and sampling rate.

Examples

The following command sets the multiplier to 256.

OUTP:DIG:DSI:MCLK:MULT 256

The following query returns the multiplier value.

OUTP:DIG:DSI:MCLK:MULT?

OUTPut:DIGital:DSI:MCLK:RATE?

Syntax

OUTPut:DIGital:DSI:MCLK:RATE?

Description

Queries the master clock rate.

Examples

The following query returns the master clock rate.

OUTP:DIG:DSI:MCLK:RATE?

Typical response: 6.144000E+06

OUTPut:DIGital:DSI:BCLK:SYNC:OUT

Syntax

OUTPut:DIGital:DSI:BCLK:SYNC:OUT <polarity>

OUTPut:DIGital:DSI:BCLK:SYNC:OUT?

Description

Sets the leading edge of the data to be synchronized to the rising edge or falling edge of the bit clock that is set to Out for the digital generator. The query returns the bit clock sync polarity type.

Parameter

ltem	Туре	Range of values	Default value
polarity	Discrete	RISing or FALLing	FALLing

Output Subsystem

Examples

The following command sets the polarity to the falling edge.

OUTP:DIG:DSI:BCLK:SYNC:OUT FALL

The following query returns the bit clock sync polarity type.

OUTP:DIG:DSI:BCLK:SYNC:OUT?

Typical response: FALL

OUTPut:DIGital:OPTical:STATe

Syntax

OUTPut:DIGital:OPTical:STATe <state>

OUTPut:DIGital:OPTical:STATe?

Description

Enables or disables the optical output for digital generator. The query returns the optical output state as 0 if the optical output state is OFF, or 1 if the optical output state is ON.

Parameter

ltem	Туре	Range of values	Default value
state	Boolean	OFF(0) or ON(1)	OFF

Examples

The following command enables the optical output.

OUTP:DIG:OPT:STAT ON

The following query returns the optical output state.

OUTP:DIG:OPT:STAT?

OUTPut:DIGital:RCLK:SOURce

Syntax

OUTPut:DIGital:RCLK:SOURce <source>
OUTPut:DIGital:RCLK:SOURce?

Description

Sets the system clock reference source type. The query returns the system clock reference source type.

INTernal Internal clock
EXTernal External clock
AESRclock Recovered clock from AES3/SPDIF interface input

Parameter

ltem	Туре	Range of values	Default value
source	Discrete	INTernal, EXTernal, or AESRclock	INTernal

Examples

The following command sets the system clock reference source type to external clock.

OUTP:DIG:RCLK:SOUR EXT

The following query returns the system clock reference source type.

OUTP:DIG:RCLK:SOUR?

Typical response: EXT

Output Subsystem

OUTPut:DIGital:RCLK:EXTernal[:TYPE]

Syntax

OUTPut:DIGital:RCLK:EXTernal[:TYPE] <type>
OUTPut:DIGital:RCLK:EXTernal[:TYPE]?

Description

Sets the external clock source type. The query returns the external clock source type.

Parameter

Item	Туре	Range of values	Default value
type	Discrete	MCLK or FSYNc	MCLK

Examples

The following command sets the external clock source type to frame sync in.

OUTP:DIG:RCLK:EXT FSYN

The following query returns the external clock type.

OUTP:DIG:RCLK:EXT?

Typical response: FSYN

OUTPut:DIGital:RCLK:EXTernal:MCLK:WLENgth

Syntax

OUTPut:DIGital:RCLK:EXTernal:MCLK:WLENgth
<length>

OUTPut:DIGital:RCLK:EXTernal:MCLK:WLENgth?

Description

Sets the word length of the master clock for the external clock source. The query returns the word length.

Parameter

Item	Туре	Range of values	Default value
length	Numeric	8 to 32	32

Remarks

- Refer to "Appendix K: Word Length, Sampling Rate, and Multiplier for Master Clock In" on page 604 for the range of word length that can be set with different master clock in multiplier and sampling rate.
- When setting the word length, the error message,
 -221,"Settings conflict..." may be generated. This error message can be ignored as this is to notify that the word length or multiplier is auto adjusted to the nearest allowable value due to the settings conflict.

Examples

The following command sets the word length to 20 bits.

OUTP:DIG:RCLK:EXT:MCLK:WLEN 20

The following query returns the word length.

OUTP: DIG: RCLK: EXT: MCLK: WLEN?

Output Subsystem

OUTPut:DIGital:RCLK:EXTernal:MCLK:MULTiplier

Syntax

OUTPut:DIGital:RCLK:EXTernal:MCLK:MULTiplier <multiplier>

OUTPut:DIGital:RCLK:EXTernal:MCLK:MULTiplier?

Description

Sets the multiplier of the master clock for the external clock source. The query returns the multiplier value.

Parameter

Item	Туре	Range of values	Default value
multiplier	Numeric	Refer to "Appendix K: Word Length, Sampling Rate, and Multiplier for Master Clock In" on page 604	128

Remark

Refer to "Appendix K: Word Length, Sampling Rate, and Multiplier for Master Clock In" on page 604 for the range of multiplier that can be set with different master clock in word length and sampling rate.

Examples

The following command sets the multiplier to 512.

OUTP:DIG:RCLK:EXT:MCLK:MULT 512

The following query returns the multiplier value.

OUTP:DIG:RCLK:EXT:MCLK:MULT?

OUTPut:DIGital:SCLK:OUT:STATe

Syntax

OUTPut:DIGital:SCLK:OUT:STATe <state>
OUTPut:DIGital:SCLK:OUT:STATe?

Description

Enables or disables the sync clock output for digital generator. The query returns the sync clock output state as 0 if the sync clock output state is OFF, or 1 if the sync clock output state is ON.

Parameter

Item	Туре	Range of values	Default value
state	Boolean	OFF(0) or ON(1)	OFF

Examples

The following command disables the sync clock output.

OUTP:DIG:SCLK:OUT:STAT OFF

The following query returns the sync clock output state.

OUTP:DIG:SCLK:OUT:STAT?

Output Subsystem

OUTPut:DIGital:SCLK:OUT:SOURce

Syntax

OUTPut:DIGital:SCLK:OUT:SOURce <source>
OUTPut:DIGital:SCLK:OUT:SOURce?

Description

Sets the sync clock source type. The query returns the sync clock source type.

INTernal Internal clock
EXTernal External clock

AESRclock Recovered clock from AES3/SPDIF interface

input

Parameter

Item	Туре	Range of values	Default value
source	Discrete	INTernal, EXTernal, or AESRclock	INTernal

Examples

The following command sets the sync clock source type to external clock.

OUTP:DIG:SCLK:OUT:SOUR EXT

The following query returns the sync clock source type.

OUTP:DIG:SCLK:OUT:SOUR?

Typical response: EXT

OUTPut:DIGital:SCLK:OUT:DIVider

Syntax

OUTPut:DIGital:SCLK:OUT:DIVider <divider>
OUTPut:DIGital:SCLK:OUT:DIVider?

Description

Sets the sync clock divider. The query returns the sync clock divider.

D1 Divide by 1
D128 Divide by 128

Parameter

Item	Туре	Range of values	Default value
divider	Discrete	D1 or D128	D1

Examples

The following command sets the sync clock divider to 128.

OUTP:DIG:SCLK:OUT:DIV D128

The following query returns the sync clock divider.

OUTP:DIG:SCLK:OUT:DIV?

Input Subsystem

Input Subsystem

The Input subsystem provides the commands to program the U8903A analyzer input configuration.

INPut:TYPE

Syntax

```
INPut:TYPE <type>, (@<channel list>)
INPut:TYPE? (@<channel list>)
```

Description

Sets the input connection for the specified channel(s). The query returns the input connection type of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
type	Discrete	BALanced or UNBalanced	UNBalanced
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Examples

The following commands set the analyzer input connections for channel 1 and 2 to Unbalanced and Balanced respectively.

```
INP:TYPE UNB, (@1)
INP:TYPE BAL, (@2)
```

The following query returns the input connection types of channel 1 and 2.

INP:TYPE? (@1,2)

Typical response: UNB, BAL

INPut:COUPling

Syntax

```
INPut:COUPling <coupling>, (@<channel list>)
INPut:COUPling? (@<channel list>)
```

Description

Sets the analyzer AC or DC coupling for the specified channel(s). The DC coupling allows both AC and DC input signals to pass through to the measurement circuitry. The AC coupling blocks the DC component of the input signal. The query returns the input coupling type of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
coupling	Discrete	AC or DC	AC
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

Ensure that the measurement function is not set to VDC (SENSe:FUNCtion command) when you are trying to set the AC coupling. Else, the measurement function will be automatically changed to default.

Input Subsystem

Examples

The following commands set the input coupling types for channel 1 and 2 to AC and DC respectively.

INP:COUP AC, (@1)

INP:COUP DC, (@2)

The following query returns the input coupling types of channel 1 and 2.

INP:COUP? (@1,2)

Typical response: AC, DC

INPut:BANDwidth

Syntax

INPut:BANDwidth <bandwidth>

INPut: BANDwidth?

Description

Sets the analyzer measurement bandwidth. The query returns the measurement bandwidth type.

Parameter

Item	Туре	Range of values	Default value
bandwidth	Discrete	HIGH or LOW HIGH: 312.5 kHz LOW: 78.125 kHz	LOW

Remark

The selected measurement bandwidth applies to all channels.

Examples

The following command sets the High measurement bandwidth.

INP:BAND HIGH

The following query returns the measurement bandwidth type.

INP:BAND?

Typical response: HIGH

INPut:EXTernal:GAIN

Syntax

INPut:EXTernal:GAIN <external gain><unit>,
(@<channel list>)

INPut:EXTernal:GAIN? (@<channel list>)

Description

Sets the external gain of the input signal. External gain is used to correct the effects of any external gain or loss that may be part of the measurement setup. For example, if an amplifier is part of the measurement setup, this external gain value is used to remove the effects of its gain. However, if an external attenuator is used in a measurement of a high voltage, this external gain value is used to correct the loss. The instrument will then report the levels being measured and not simply the levels being presented to the instrument. The external gain factor can be entered in dB or as a multiplication factor x.

Input Subsystem

Parameters

Item	Туре	Range of values	Default value
external gain	Numeric	-60 dB to 60 dB or 0.001x to 1000 x	0 dB
unit	Discrete	dB or x	dB
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- The query will return the external gain factor in the relative unit that you set. For example, if you set the external gain to -6 dB, it will return the value as -6. If you set the external gain to 0.5x, it will return the value as 0.5.
- However, you can also change the external gain factor to be retuned in your desired unit by sending the INP:EXT:GAIN:UNIT command. The last unit set in the specified channel will always take effect and cause this query to return the value in the particular unit.
- Multiple responses are separated by commas.

Examples

The following command sets the external gain for channel 1 to -6 dB.

```
INP:EXT:GAIN -6dB, (@1)
```

The following query returns the external gain for channel 1.

INP:EXT:GAIN? (@1)

INPut:EXTernal:GAIN:UNIT

Syntax

```
INPut:EXTernal:GAIN:UNIT <unit>,
  (@<channel list>)
INPut:EXTernal:GAIN:UNIT? (@<channel list>)
```

Description

Sets the unit of the external gain for the specified channel(s). The query returns the unit of the external gain for the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
unit	Discrete	dB or x	dB
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Examples

The following command sets the unit of the external gain for channel 1 to x.

```
INP:EXT:GAIN:UNIT x, (@1)
```

The following query returns the unit of the external gain for channel 1.

```
INP:EXT:GAIN:UNIT? (@1)
```

Input Subsystem

INPut:DIGital:TYPE

Syntax

INPut:DIGital:TYPE <type>

INPut:DIGital:TYPE?

Description

Sets the digital analyzer input connection. The query returns the digital analyzer input connection type.

BALanced Balanced or differential input
UNBalanced Unbalanced with respect to ground

OPTical Optical connector (TOSLINK)

DSI Digital Serial Interface

Parameter

Item	Туре	Range of values	Default value
type	Discrete	BALanced, UNBalanced, OPTical, or DSI	UNBalanced

Examples

The following command sets the digital analyzer input connection to Optical.

INP:DIG:TYPE OPT

The following query returns the digital analyzer input connection type.

INP:DIG:TYPE?

Typical response: OPT

INPut:DIGital:SRATe?

Syntax

INPut:DIGital:SRATe?

Description

Queries the sampling rate of the digital analyzer input signals.

Remark

The command

INITiate[:IMMediate]:DIGital:ANALyzer or INITiate:CONTinue:DIGital:ANALyzer must be sent prior to sending this command.

Examples

The following query returns the sampling rate of the digital analyzer input signal.

INP:DIG:SRAT?

Typical response: 4.800000E+01

INPut:DIGital:IMPedance:BALanced

Syntax

INPut:DIGital:IMPedance:BALanced <impedance>

INPut:DIGital:IMPedance:BALanced?

Description

Sets the impedance of the digital analyzer balanced input connection. The query returns the impedance value.

Input Subsystem

HIZ High impedance

R110 Low impedance of 110 Ω for balanced

input type

Parameter

Item	Туре	Range of values	Default value
impedance	Discrete	HIZ or R110	R110

Examples

The following command sets the impedance of the digital analyzer balanced input connection to 110 Ω .

INP:DIG:IMP:BAL R110

The following query returns the impedance value.

INP:DIG:IMP:BAL?

Typical response: R110

INPut:DIGital:IMPedance:UNBalanced

Syntax

INPut:DIGital:IMPedance:UNBalanced <impedance>

INPut:DIGital:IMPedance:UNBalanced?

Description

Sets the impedance of the digital analyzer unbalanced input connection. The query returns the impedance value.

HIZ	High impedance
R75	Low impedance of 75 Ω for unbalanced input type

Parameter

Item	Туре	Range of values	Default value
impedance	Discrete	HIZ or R75	R75

Examples

The following command sets the impedance of the digital analyzer unbalanced input connection to 75 Ω

INP:DIG:IMP:UNB R75

The following query returns the impedance value.

INP:DIG:IMP:UNB?Typical response: R75

INPut:DIGital:AES:AUDio[:DECoding]:FORMat

Syntax

INPut:DIGital:AES:AUDio[:DECoding]:FORMat
<format>

INPut:DIGital:AES:AUDio[:DECoding]:FORMat?

Description

Sets the audio decoding format of the embedded AES3/SPDIF interface audio signals. The query returns the audio decoding format.

Input Subsystem

LPCM Linear Pulse Code Modulation

ULAW $\mu\text{-Law}$ decoding format ALAW A-Law decoding format

Parameter

Item	Туре	Range of values	Default value
format	Discrete	LPCM, ULAW, or ALAW	LPCM

Examples

The following command sets the decoding format of the AES3/SPDIF interface to A-Law.

INP:DIG:AES:AUD:FORM ALAW

The following query returns the decoding format.

INP:DIG:AES:AUD:FORM?

Typical response: ALAW

INPut:DIGital:AES:AUDio:RESolution

Syntax

INPut:DIGital:AES:AUDio:RESolution <resolution>

INPut:DIGital:AES:AUDio:RESolution?

Description

Sets the audio resolution or bit depth for the AES3/SPDIF interface audio data to be analyzed. The query returns the audio resolution.

Parameter

ltem	Туре	Range of values	Default value
resolution	Numeric	8 to 24	24

Remarks

- If the audio resolution value matches or exceeds the resolution of the incoming digital signal, the signal is passed on.
- If the audio resolution value is lower than the resolution of the incoming digital signal, the signal is truncated at the least significant bit (LSB).

Examples

The following command sets the audio resolution to 20 bits.

INP:DIG:AES:AUD:RES 20

The following query returns the audio resolution.

INP:DIG:AES:AUD:RES?

Typical response: 20

INPut:DIGital:DSI:VOLTage

Syntax

INPut:DIGital:DSI:VOLTage <level>

INPut:DIGital:DSI:VOLTage?

Description

Sets the input logic level of the incoming signal for the DSI interface. The query returns the input logic level of the DSI interface.

Input Subsystem

Parameter

Item	Туре	Range of values	Default value
level	Numeric	1.2 to 3.3 V	2.5 V

Examples

The following command sets the input logic level to 1.5 V.

INP:DIG:DSI:VOLT 1.5

The following query returns the input logic level.

INP:DIG:DSI:VOLT?

Typical response: 1.500000E+00

INPut:DIGital:DSI:AUDio[:DECoding]:FORMat

Syntax

INPut:DIGital:DSI:AUDio[:DECoding]:FORMat
<format>

INPut:DIGital:DSI:AUDio[:DECoding]:FORMat?

Description

Sets the audio decoding format of the embedded DSI interface audio signals. The query returns the audio decoding format.

LPCM Linear Pulse Code Modulation

ULAW μ-Law decoding format

ALAW A-Law decoding format

Parameter

Item	Туре	Range of values	Default value
format	Discrete	LPCM, ULAW, or ALAW	LPCM

Examples

The following command sets the decoding format of the DSI interface to A-Law.

INP:DIG:DSI:AUD:FORM ALAW

The following query returns the decoding format.

INP:DIG:DSI:AUD:FORM?

Typical response: ALAW

INPut:DIGital:DSI:AUDio:RESolution

Syntax

INPut:DIGital:DSI:AUDio:RESolution <resolution>

INPut:DIGital:DSI:AUDio:RESolution?

Description

Sets the audio resolution or bit depth for the DSI interface audio data to be analyzed. The query returns the audio resolution.

Parameter

Item	Туре	Range of values	Default value
resolution	Numeric	8 to 24	24

Input Subsystem

Remarks

- If the audio resolution value matches or exceeds the resolution of the incoming digital signal, the signal is passed on.
- If the audio resolution value is lower than the resolution of the incoming digital signal, the signal is truncated at the least significant bit (LSB).

Examples

The following command sets the audio resolution to 20 bits.

INP:DIG:DSI:AUD:RES 20

The following query returns the audio resolution.

INP:DIG:DSI:AUD:RES?

Typical response: 20

INPut:DIGital:DSI:AUDio:WLENgth

Syntax

INPut:DIGital:DSI:AUDio:WLENgth <length>

INPut:DIGital:DSI:AUDio:WLENgth?

Description

Sets the word length for the DSI interface. The query returns the word length.

Parameter

Item	Туре	Range of values	Default value
length	Numeric	8 to 32	32

Examples

The following command sets the word length to 20 bits.

INP:DIG:DSI:AUD:WLEN 20

The following query returns the word length.

INP:DIG:DSI:AUD:WLEN?

Typical response: 20

INPut:DIGital:DSI:MCLK:SOURce

Syntax

INPut:DIGital:DSI:MCLK:SOURce <source>

INPut:DIGital:DSI:MCLK:SOURce?

Description

Sets the master clock reference source type. The query returns the master clock reference source type.

INTernal Set the internal clock as the master clock

EXTernal Use the external clock as the master clock

Parameter

Item	Туре	Range of values	Default value
source	Discrete	INTernal or EXTernal	EXTernal

Examples

The following command sets the internal clock as the master clock.

INP:DIG:DSI:MCLK:SOUR INT

Input Subsystem

The following query returns the master clock reference source type.

INP:DIG:DSI:MCLK:SOUR?

Typical response: INT

INPut:DIGital:DSI:WBCLk:DIRection

Syntax

INPut:DIGital:DSI:WBCLk:DIRection <direction>

INPut:DIGital:DSI:WBCLk:DIRection?

Description

Sets the word clock and bit clock direction. The query returns the word clock and bit clock direction.

Parameter

ltem	Туре	Range of values	Default value
direction	Discrete	IN or OUT	IN

Examples

The following command sets the word clock and bit clock direction to IN.

INP:DIG:DSI:WBCL:DIR IN

The following query returns the word clock and bit clock direction.

INP:DIG:DSI:WBCL:DIR?

INPut:DIGital:DSI:MCLK:MULTiplier

Syntax

INPut:DIGital:DSI:MCLK:MULTiplier <multiplier>
INPut:DIGital:DSI:MCLK:MULTiplier?

Description

Sets the master clock multiplier. The query returns the multiplier value.

Parameter

Item	Туре	Range of values	Default value
multiplier	Numeric	Refer to "Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface" on page 597	-

Remarks

- If the INPut:DIGital:DSI:MCLK:SOURce is set to INTernal, refer to "Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface" on page 597 for the range of multiplier that can be set with different DSI word length and sampling rate.
- If the INPut:DIGital:DSI:MCLK:SOURce is set to EXTernal, the multiplier can be set to any value depending on the external master clock rate.
- Master clock rate is obtained by multiplying the sample rate with the multiplier.

Examples

The following command sets the multiplier to 256.

TNP:DTG:DST:MCLK:MULT 256

Input Subsystem

The following query returns the multiplier value.

INP:DIG:DSI:MCLK:MULT?

Typical response: 256

INPut:DIGital:DSI:BCLK:SYNC

Syntax

INPut:DIGital:DSI:BCLK:SYNC <polarity>

INPut:DIGital:DSI:BCLK:SYNC?

Description

Sets the leading edge of the data to be synchronized to the rising edge or falling edge of the bit clock. The query returns the bit clock sync polarity type.

Parameter

ltem	Туре	Range of values	Default value
polarity	Discrete	RISing or FALLing	FALLing

Examples

The following command sets the polarity to the falling edge.

INP:DIG:DSI:BCLK:SYNC:OUT FALL

The following query returns the bit clock sync polarity type.

INP:DIG:DSI:BCLK:SYNC:OUT?

Typical response: FALL

INPut:DIGital:DSI:DATA:FORMat

Syntax

INPut:DIGital:DSI:DATA:FORMat <format>

INPut:DIGital:DSI:DATA:FORMat?

Description

Sets the format for the DSI interface audio data to be analyzed. The query returns the format for the DSI interface audio data.

LEFT	Left justified. The active data bits are filled to the left edge of the data word.
RIGHt	Right justified. The active data bits are filled to the right edge of the data word.
I2S	I2S format. The word clock is low for the first channel (left channel) and high for the second channel (right channel)
DSP	The period of the word clock is only 1 bit of the bit clock and the data is 1 bit clock delay from the beginning of the word clock.

Parameter

Item	Туре	Range of values	Default value
format	Discrete	LEFT, RIGHt, I2S, or DSP	LEFT

Examples

The following command sets the DSI data format to I2S.

INP:DIG:DSI:DATA:FORM I2S

The following query returns the DSI data format.

INP:DIG:DSI:DATA:FORM?

Typical response: I2S

Input Subsystem

INPut:DIGital:DSI:DATA:MSB:PADDing

Syntax

INPut:DIGital:DSI:DATA:MSB:PADDing <bits>
INPut:DIGital:DSI:DATA:MSB:PADDing?

Description

Sets the number of padding bits in front of the most significant bit (MSB). The query returns the number of padding bits.

Parameter

Item	Туре	Range of values	Default value
bits	Numeric	0 to 32 bits	0

Examples

The following command sets the number of padding bits to 3 bits.

INP:DIG:DSI:DATA:MSB:PADD 3

The following query returns the number of padding bits.

INP:DIG:DSI:DATA:MSB:PADD?

INPut:DIGital:FREQuency:SCALing

Syntax

INPut:DIGital:FREQuency:SCALing <scaling>,
 (@<channel list>)
INPut:DIGital:FREQuency:SCALing?
 (@<channel list>)

Description

Sets the reference sampling rate source to scale the frequency measurement for the specified channel(s). The query returns the frequency scaling source.

MISR	Measured input sampling rate
CUSTom	Custom reference sampling rate

Parameters

Item	Туре	Range of values	Default value
scaling	Numeric	MISR or CUSTom	MISR
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

When the reference sampling rate source is set to custom, the value set at INPut:DIGital:REFerence:SRATe will be used as the reference sampling rate.

Input Subsystem

Examples

The following command sets the reference sampling rate source for channel 1 to measured input sampling rate.

```
INP:DIG:FREQ:SCAL MISR, (@D1)
```

The following query returns the frequency scaling source for channel 1.

```
INP:DIG:FREQ:SCAL? (@D1)
```

Typical response: MISR

INPut:DIGital:REFerence:SRATe

Syntax

```
INPut:DIGital:REFerence:SRATe <sampling
rate>[<unit>], (@<channel list>)
```

INPut:DIGital:REFerence:SRATe? (@<channel list>)

Description

Sets the reference sampling rate for the specified channel(s). The query returns the reference sampling rate.

Parameters

Item	Туре	Range of values	Default value
sampling rate	Numeric	-	48000
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remark

You can also include a multiplier for the unit, for example, kHz. The $^{\prime}k^{\prime}$ is the multiplier for the unit Hz.

Examples

The following command sets the reference sampling rate for channel 1 to 48 kHz.

INP:DIG:REF:SRAT 48000 (@D1)

The following query returns the reference sampling rate of channel 1.

INP:DIG:REF:SRAT? (@D1)

Typical response: 4.800000E+04

Source Subsystem

Source Subsystem

The Source subsystem provides the commands to select the waveform type and configure the generator parameters.

SOURce: FUNCtion

Syntax

```
SOURce:FUNCtion <waveform type>,
  (@<channel list>)
SOURce:FUNCtion? (@<channel list>)
```

Description

Sets the analog generator waveform type for the specified channel(s). The query returns the waveform type of the selected channel(s). Multiple responses are separated by commas.

The waveform types with their corresponding <waveform type> parameters are listed as follows.

SINE	Sine waveform
VPHase	Variable phase waveform
DUAL	Dual waveform
SMPTe11	SMPTE IMD 1 to 1 waveform
SMPTe41	SMPTE IMD 4 to 1 waveform
SMPTe101	SMPTE IMD 10 to 1 waveform
DFDiec118	DFD IEC 60118 waveform
DFDiec268	DFD IEC 60268 waveform
WGAussian	Gaussian PDF white noise signal
WRECtangular	Rectangular PDF white noise signal
DC	DC signal
MULTitone	Multitone waveform

SQUare Square waveform
ARBitrary Arbitrary waveform

Parameters

Item	Туре	Range of values	Default value
waveform type	Discrete	SINE, VPHase, DUAL, SMPTe11, SMPTe41, SMPTe101, DFDiec118, DFDiec268, WGAussian, WRECtangular, DC, MULTitone, SQUare, or ARBitrary	SINE
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- If you change the waveform type, the particular parameter values of the previous waveform will be set to the default values of the current waveform.
- Selecting the variable phase waveform on a selected channel will change the waveform type for all channels to variable phase.
- Refer to "Appendix C: Waveform Parameters" on page 575 for the configurable parameters of the corresponding waveform types.

Examples

The following commands set the waveform types for channel 1 and 2 to Sine and Square respectively.

```
SOUR: FUNC SINE, (@1)
SOUR: FUNC SQU, (@2)
```

The following query returns the waveform types of channel 1 and 2.

SOUR: FUNC? (@1,2)

Typical response: SINE, SQU

SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet

Syntax

```
SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet
<voltage>[<unit>], (@<channel list>)
SOURce:VOLTage[:LEVel][:IMMediate]:OFFSet?
(@<channel list>)
```

Description

Sets the signal DC offset level in V for the specified channel(s). The query returns the DC offset of the selected channel(s) in V. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
voltage	Numeric	±11.3 V	0 V
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- The DC offset is not applicable for the square, DC, and variable phase waveform types.
- The DC offset is dependent on the amplitude of the signal to be generated for a particular channel. When the DC offset and amplitude are added together, it must not exceed the maximum voltage. The relationship between the amplitude in Vp and DC offset is as follows.

$$Vp \leq Vmax - |Voffset|$$

where Vmax is the maximum voltage of the output connector. For the Balanced output connection, the maximum voltage is 22.6 Vp, while for Unbalanced and Common, the maximum voltage is 11.3 Vp.

- If the specified DC offset is invalid, the generator will automatically adjust it to the maximum DC offset allowed with the specified amplitude. The -222,"Data out of range" error will be generated and the DC offset will be adjusted as described.
- You can also include a multiplier for the unit, for example, mV. The 'm' is the multiplier for the unit V.

Examples

The following commands set the DC offset for channel 1 and 2 to 1 V and 3.1 V respectively.

```
SOUR: VOLT: OFFS 1, (@1)
SOUR: VOLT: OFFS 3.1, (@2)
```

The following query returns the DC offset values of channel 1 and 2 in V.

```
SOUR: VOLT: OFFS? (@1,2)
```

Typical response: 1.000000E+00,3.100000E+00

SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude]

Syntax

```
SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude]
<voltage>[<unit>], (@<channel list>)
SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude]?
(@<channel list>)
```

Description

Sets the signal amplitude level for the specified channel(s). The query returns the amplitude of the selected channel(s) in Vrms. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
voltage	Numeric	Refer to "Appendix D: Analog Waveform Amplitude Range" on page 579	0 Vrms
unit	Discrete	 V (for the DC signal) Vrms, Vpp, Vp, dBV, dBm, or dBu (for other waveform types) 	Vrms
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

• The amplitude is dependent on the DC offset of the signal to be generated for a particular channel. When the DC offset and amplitude are added together, it must not exceed the maximum voltage. The relationship between the amplitude in Vp and DC offset is as follows.

$$Vp \leq Vmax - |Voffset|$$

where Vmax is the maximum voltage of the output connector. For the Balanced output connection, the maximum voltage is 22.6 Vp, while for Unbalanced and Common, the maximum voltage is 11.3 Vp.

- This command is used to set the amplitude of the composite signal if the dual waveform is selected using the SOURce:FUNCtion command. Use the SOURce:VOLTage:RATio command to set the amplitude ratio of the second component over the first component.
- The allowable unit for the DC signal is only V. The
 -131,"Invalid suffix" error will be generated if other units have been selected for the DC signal.
- For all waveform types except DC, you can select either Vrms, Vpp, Vp, dBV, dBm, or dBu. The -131,"Invalid suffix" error will be generated if you have selected an invalid unit.

- You can also include a multiplier for the unit, for example, mVrms. The 'm' is the multiplier for the unit Vrms.
- If the amplitude setting is invalid, the analog generator will automatically adjust the amplitude to the maximum value allowed with the specified DC offset. The -222,"Data out of range" error will be generated and the amplitude value will be clipped to the maximum value allowed.

Examples

The following commands set the amplitude levels for channel 1 and 2 to 1 Vrms and 5 Vrms respectively.

```
SOUR: VOLT 1Vrms, (@1)
SOUR: VOLT 5Vrms, (@2)
```

The following query returns the amplitude levels of channel 1 and 2 in Vrms.

```
SOUR: VOLT? (@1,2)
```

Typical response: 1.000000E+00,5.000000E+00

SOURce:FREQuency[<j>][:CW]

Syntax

```
SOURce:FREQuency[<j>][:CW] <frequency>[<unit>],
  (@<channel list>)
SOURce:FREQuency[<j>][:CW]? (@<channel list>)
```

Description

Sets the signal frequency for the specified channel(s) in Hz. The query returns the frequency of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameter

Item	Туре	Range of values	Default value
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Refer to "Appendix A: Waveform Frequency Range and Default Values" on page 568 for the <frequency> parameter.

Remarks

- The <j> parameter represents 1 or 2.
 - For backward compatibility, SOURce: FREQuency1 can also be used to set the lower frequency and SOURce: FREQuency2 can also be used to set the upper frequency.
 - For the SMPTE IMD 1:1, 4:1, and 10:1 waveforms, SOURce:FREQuency:LOWer represents the lower frequency while SOURce:FREQuency:UPPer represents the upper frequency.
 - For the dual waveform, SOURce: FREQuency1 represents the frequency of the first sine component while SOURce: FREQuency2 represents the frequency of the second sine component.
 - For the DFD IEC 60118 waveform, use SOURce: FREQuency: UPPer to set the upper frequency and the SOURce: FREQuency: DIFFerence command to set the frequency difference.
 - For the DFD IEC 60268 waveform, use the SOURce: FREQuency: DIFFerence command to set the frequency difference and the SOURce: FREQuency: CENTer command to set the center frequency.
- The frequency setting is not applicable for the DC, noise, multitone, and arbitrary waveforms.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.

Examples

The following commands set the sine waveform frequency for channel 1 and square waveform frequency for channel 2 to 1 kHz and 5 kHz respectively.

```
SOUR: FREQ1 1000, (@1)
SOUR: FREQ1 5000, (@2)
```

The following query returns the frequency values of channel 1 and 2 in Hz.

```
SOUR: FREQ1? (@1,2)
```

Typical response: 1.000000E+03,5.000000E+03

SOURce:FREQuency:CENTer

Syntax

```
SOURce:FREQuency:CENTer <frequency>[<unit>],
(@<channel list>)
SOURce:FREQuency:CENTer? (@<channel list>)
```

Description

Sets the center frequency of the DFD IEC 60268 waveform for the specified channel(s) in Hz. The center frequency determines the frequency for the two tones of the DFD IEC 60268 signal are spaced in equal increments above and below. The query returns the center frequency value of the selected channel(s) in Hz. Multiple responses are separated by commas.

Source Subsystem

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	3 kHz to 79 kHz	10 kHz
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the DFD IEC 60268 waveform. Use the SOURce: FUNCtion command to select the DFD IEC 60268 waveform type.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.

Examples

The following commands set the center frequencies for channel 1 and 2 to 1 kHz and 5 kHz respectively.

```
SOUR: FREQ: CENT 1kHz, (@1)
SOUR: FREQ: CENT 5kHz, (@2)
```

The following query returns the center frequency values of channel 1 and 2 in Hz.

```
SOUR: FREQ: CENT? (@1,2)
```

Typical response: 1.000000E+03,5.000000E+03

SOURce:FREQuency:DIFFerence

Syntax

SOURce:FREQuency:DIFFerence <frequency>[<unit>],
(@<channel list>)
SOURce:FREQuency:DIFFerence? (@<channel list>)

Description

Sets the frequency difference of the DFD IEC 60268 and DFD IEC 60118 waveforms for the specified channel(s) in Hz. The frequency difference determines the difference frequency (spacing) between the two tones of the DFD IEC 60268 and DFD IEC 60118 signals. The query returns the frequency difference of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	80 Hz to 2 kHz	80 Hz
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the DFD IEC 60118 and DFD IEC 60268 waveforms. Use the SOURce: FUNCtion command to select either one of these two waveform types.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.

Source Subsystem

Examples

The following commands set the frequency difference values for channel 1 and 2 to 100 Hz and 80 Hz respectively.

```
SOUR: FREQ: DIFF 100Hz, (@1)
SOUR: FREQ: DIFF 80Hz, (@2)
```

The following query returns the frequency difference values of channel 1 and 2 in Hz.

```
SOUR: FREQ: DIFF? (@1,2)
```

Typical response: 1.000000E+02,8.000000E+01

SOURce:FREQuency:UPPer

Syntax

```
SOURce:FREQuency:UPPer <frequency>[<unit>],
  (@<channel list>)
SOURce:FREQuency:UPPer? (@<channel list>)
```

Description

Sets the upper frequency of the DFD IEC 60118, SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms for the specified channel(s) in Hz. The upper frequency determines the frequency of the higher frequency tone in the two-tone waveform. The query returns the upper frequency of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	DFD IEC 60118	10 Hz
		3 kHz to 80 kHz	
		SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1	7 kHz
		2 kHz to 60 kHz	
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the DFD IEC 60118, SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms. Use the SOURce: FUNCtion command to select either one of these four waveform types.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.

Examples

The following commands set the upper frequency values for channel 1 and 2 to 5 kHz and 10 kHz respectively.

```
SOUR:FREQ:UPP 5kHz, (@1)
SOUR:FREQ:UPP 10kHz, (@2)
```

The following query returns the upper frequency values of channel 1 and 2 in Hz.

```
SOUR: FREQ: UPP? (@1,2)
```

Typical response: 5.000000E+03,1.000000E+04

SOURce:FREQuency:LOWer

Syntax

```
SOURce:FREQuency:LOWer <frequency>[<unit>],
(@<channel list>)
SOURce:FREQuency:LOWer? (@<channel list>)
```

Description

Sets the lower frequency of the SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms for the specified channel(s) in Hz. The lower frequency determines the frequency of the lower frequency tone in the two-tone waveform. The query returns the lower frequency of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	40 Hz to 500 Hz	60 Hz
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms. Use the SOURce:FUNCtion command to select either one of these four waveform types.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.

Examples

The following commands set the lower frequency values for channel 1 and 2 to 100 Hz and 80 Hz respectively.

```
SOUR: FREQ: LOW 100Hz, (@1)
SOUR: FREQ: LOW 80Hz, (@2)
```

The following query returns the lower frequency values of channel 1 and 2 in Hz.

```
SOUR: FREQ: LOW? (@1,2)
```

Typical response: 1.000000E+02,8.000000E+01

SOURce: VOLTage: RATio

Syntax

```
SOURce:VOLTage:RATio <ratio>, (@<channel list>)
SOURce:VOLTage:RATio? (@<channel list>)
```

Description

Sets the voltage ratio of the second component over the first component of the dual waveform for the specified channel(s) in percentage. The query returns the amplitude ratio of the selected channel(s) in percentage. Multiple responses are separated by commas.

Source Subsystem

Parameters

Item	Туре	Range of values	Default value
ratio	Numeric	0 to 100%	100
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

This setting is only applicable for the dual waveform. Use the SOURce: FUNCtion command to select the dual waveform type.

Examples

The following commands set the voltage ratio values for channel 1 and 2 to 1% and 10% respectively.

```
SOUR: VOLT: RAT 1, (@1)
SOUR: VOLT: RAT 10, (@2)
```

The following query returns the voltage ratio values of channel 1 and 2 in percentage.

```
SOUR: VOLT: RAT? (@1,2)
```

Typical response: 1.000E+00,1.000E+01

SOURce:PHASe[:ADJust]

Syntax

SOURce:PHASe[:ADJust] <phase>, (@<channel list>)
SOURce:PHASe[:ADJust]? (@<channel list>)

Description

Sets the phase of the selected channel with reference to channel 1 in degree. The query returns the phase of the selected channel(s) in degree. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
phase	Numeric	–180 ° to 179.99 °	0
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the variable phase waveform. Use the SOURce: FUNCtion command to select the variable phase waveform type.
- Channel 1 is used as the reference channel and will always have the value of 0 $^{\circ}$. Therefore, this command is not applicable for channel 1.

Examples

The following command sets the phase for channel 2 to 100° with reference to channel 1.

SOUR: PHAS 100, (@2)

Source Subsystem

The following query returns the phase of channel 2 with reference to channel 1.

SOUR: PHAS? (@2)

Typical response: 1.000000E+02

SOURce: REFerence: IMPedance

Syntax

```
SOURce:REFerence:IMPedance <impedance>,
  (@<channel list>)
SOURce:REFerence:IMPedance? (@<channel list>)
```

Description

Sets the generator reference impedance for the specified channel(s) in ohms (Ω) . The reference impedance is used to set the amplitude value in unit dBm. The query returns the generator reference impedance of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
impedance	Numeric	0 < impedance ≤ 1.0E+9	Ω 000
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Examples

The following command sets the reference impedance to $600~\Omega$ for channel 1 and 2.

```
SENS: REF: IMP 600, (@1,2)
```

The following query returns the reference impedances for channel 1 and 2.

SENS:REF:IMP? (@1,2)

Typical response: 6.000000E+02,6.000000E+02

SOURce:MULTitone:FREQuency:STARt

Syntax

```
SOURce:MULTitone:FREQuency:STARt
<frequency>[<unit>], (@<channel list>)
SOURce:MULTitone:FREQuency:STARt?
(@<channel list>)
```

Description

Sets the start frequency of the multitone waveform for the specified channel(s). The start frequency defines the lowest tone frequency in the multitone waveform. The query returns the start frequency of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	5 Hz to 80 kHz	1 kHz
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:FUNCtion command to select the multitone waveform type.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.

Source Subsystem

If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the start frequency value for channel 1 to 5 kHz.

```
SOUR: MULT: FREQ: STAR 5000, (@1)
```

The following query returns the start frequency value of channels 1 in Hz.

```
SOUR: MULT: FREQ: STAR? (@1)

Typical response: 5.000000E+03
```

SOURce:MULTitone:FREQuency:STOP

Syntax

```
SOURce:MULTitone:FREQuency:STOP
<frequency>[<unit>], (@<channel list>)
SOURce:MULTitone:FREQuency:STOP?
(@<channel list>)
```

Description

Sets the stop frequency of the multitone waveform for the specified channel(s). The stop frequency defines the highest tone frequency in the multitone waveform. The query returns the stop frequency of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	5 Hz to 80 kHz	5 kHz
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform.

 Use the SOURce: FUNCtion command to select the multitone waveform type.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the stop frequency value for channel 1 to 10 kHz.

```
SOUR: MULT: FREQ: STOP 10kHz, (@1)
```

The following query returns the stop frequency value of channels 1 in Hz.

SOUR: MULT: FREQ: STOP? (@1)

Typical response: 1.000000E+04

SOURce:MULTitone:FREQuency:SPACing

Syntax

```
SOURce:MULTitone:FREQuency:SPACing <spacing>,
(@<channel list>)
SOURce:MULTitone:FREQuency:SPACing?
(@<channel list>)
```

Description

Sets the frequency spacing type between the start and stop frequency of the multitone waveform for the specified channel(s). The query returns the frequency spacing type of the selected channel(s). Multiple responses are separated by commas.

LINear	Linear frequency spacing
LOG	Logarithmic frequency spacing

Parameters

Item	Туре	Range of values	Default value
spacing	Discrete	LINear or LOG	LINear
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:FUNCtion command to select the multitone waveform type.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the frequency spacing for channel 1 to Log.

SOUR: MULT: FREQ: SPAC LOG, (@1)

The following query returns the frequency spacing type of channel 1.

SOUR: MULT: FREQ: SPAC? (@1)

Typical response: LOG

SOURce:MULTitone:COUNt

Syntax

SOURce:MULTitone:COUNt <tone count>,
 (@<channel list>)
SOURce:MULTitone:COUNt? (@<channel list>)

Description

Sets the tones of the multitone waveform for the specified channel(s). Tones refer to the number of signal frequency components. The query returns the number of tones of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
tone count	Numeric	1 to 64	5
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Source Subsystem

Remarks

- This setting is only applicable for the multitone waveform.

 Use the SOURce: FUNCtion command to select the multitone waveform type.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following commands set the tones for channel 1 and 2 to 3 and 15 respectively.

```
SOUR: MULT: COUN 3, (@1)
SOUR: MULT: COUN 15, (@2)
```

The following query returns the number of tones of channel 1 and 2.

```
SOUR: MULT: COUN? (@1,2)

Typical response: 3,15
```

SOURce:MULTitone:WLEN

Syntax

```
SOURce:MULTitone:WLEN <length>,
  (@<channel list>)
SOURce:MULTitone:WLEN? (@<channel list>)
```

Description

Sets the waveform length of the multitone waveform for the specified channel(s). The waveform length determines the number of samples used to create one iteration of the multitone waveform. Longer waveform length provides higher frequency resolution but take more time in generation and processing. The query returns the waveform length of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
length	Discrete	L256, L512, L1024, L2048, L4096, L8192, L16384, or L32768	L1024
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform.

 Use the SOURce: FUNCtion command to select the multitone waveform type.
- The waveform length value must be less than or equal to the record length.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the waveform length for channel $1\ \text{to}\ 2048$ points.

SOUR: MULT: WLEN L2048, (@1)

The following query returns the waveform length of channel 1.

SOUR: MULT: WLEN? (@1)

Typical response: L2048

SOURce:MULTitone:RLEN

Syntax

SOURce:MULTitone:RLEN <length>,
 (@<channel list>)
SOURce:MULTitone:RLEN? (@<channel list>)

Description

Sets the record length of the multitone waveform for the specified channel(s). The record length determines the number of samples created for one channel in the .arb output file. The output file may contain multiple iterations of the multitone waveform. The record length value is normally set to the same value as the waveform length. The query returns the record length of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
length	Discrete	L256, L512, L1024, L2048, L4096, L8192, L16384, or L32768	L2048
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform.
 Use the SOURce: FUNCtion command to select the multitone waveform type.
- The record length value must be greater than or equal to the record length.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the record length for channel 1 to 4096 points.

SOUR: MULT: RLEN L4096, (@1)

The following query returns the record length of channel 1.

SOUR: MULT: RLEN? (@1)

Typical response: L4096

SOURce: MULTitone: CRESt?

Syntax

SOURce: MULTitone: CRESt? (@<channel list>)

Description

Queries the crest factor of the multitone waveform for the selected channel(s). Multiple responses are separated by commas.

Parameter

Item	Туре	Range of values	Default value
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

This setting is only applicable for the multitone waveform. Use the SOURce: FUNCtion command to select the multitone waveform type.

Source Subsystem

Examples

The following query returns the crest factor of multitone waveform for channel 1.

SOUR: MULT: CRESt? (@1)

Typical response: 1.4142000E+0

SOURce:MULTitone:TONE:CLEar

Syntax

SOURce: MULTitone: TONE: CLEar (@<channel list>)

Description

Clears all the tones of the multitone waveform for the specified channel(s).

Parameter

Item	Туре	Range of values	Default value
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:FUNCtion command to select the multitone waveform type.
- After all the tones are cleared, an initial tone with 1 kHz frequency, 0 dBV amplitude, and 0 $^{\circ}$ will be the default.

Examples

The following command clears all the tones of the multitone waveform for channel 1.

SOUR: MULT: TONE: CLE (@1)

SOURce:MULTitone:TONE:ADD

Syntax

```
SOURce:MULTitone:TONE:ADD <index>,
<frequency>[<unit>], <voltage>[<unit>], <phase>,
(@<channel list>)
```

Description

Adds a customized tone into the multitone waveform for the specified channel(s).

Parameters

Item	Туре	Range of values	Default value
index	Numeric	0 to 63	0
frequency	Numeric	5 Hz to 80 kHz	1 kHz
voltage	Numeric	Unbalanced	1 Vrms
		0 to 8 Vrms (0 to 11.3 Vp)	
		Balanced	
		0 to 16 Vrms (0 to 22.6 Vp)	
phase	Numeric	−180 ~ 179.99	0
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:FUNCtion command to select the multitone waveform type.
- This command will add a customized tone into the existing multitone waveform. The position of the added tone will be determined by the index. The index must be less than the total number of tones.

Source Subsystem

If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command adds a 5 kHz frequency, 0.5 Vrms voltage, and 80 $^{\circ}$ phase tone to the current multitone waveform for channel 1 at position 5.

SOUR: MULT: TONE: ADD 4, 5000, 0.5, 80, (@1)

SOURce:MULTitone:TONE:DELete

Syntax

SOURce:MULTitone:TONE:DELete <index>,
 (@<channel list>)

Description

Deletes a specific tone from the multitone waveform for the specified channel(s).

Parameters

Item	Туре	Range of values	Default value
index	Numeric	0 to 63	0
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

• This setting is only applicable for the multitone waveform.

Use the SOURce: FUNCtion command to select the multitone waveform type.

• This command will delete a tone from the existing multitone waveform. The deleted tone will be determined by the index. The index must be less than the total number of tones.

Examples

The following command deletes the tone 5 of the multitone waveform for channel 1.

```
SOUR: MULT: TONE: DEL 4, (@1)
```

SOURce:MULTitone:TONE:FREQuency

Syntax

```
SOURce:MULTitone:TONE:FREQuency
<frequency>[<unit>], (<tone list>),
  (@<channel list>)
SOURce:MULTitone:TONE:FREQuency? (<tone list>),
  (@<channel list>)
```

Description

Sets the frequency of the tone(s) in the multitone waveform for the specified channel(s). The query returns the frequency of the tone(s) of the selected channel(s). Multiple responses are separated by commas.

Source Subsystem

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	5 Hz to 80 kHz	1 kHz
tone list	Discrete	One or more tones. • (1) for tone 1 • (1,2) for tone 1 and 2 • (1:10) for tone 1 through 10	Required parameter
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:FUNCtion command to select the multitone waveform type.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the frequency of the tone 5 for channel 1 to 2 kHz.

```
SOUR: MULT: TONE: FREQ 2kHz, (5), (@1)
```

The following query returns the frequency of tone 5 and tone 6 for channel 1.

```
SOUR: MULT: TONE: FREQ? (5,6), (@1)
```

Typical response: 2.000000E+03,3.000000E+03

SOURce:MULTitone:TONE:VOLTage

Syntax

```
SOURce:MULTitone:TONE:VOLTage <voltage>[<unit>],
(<tone list>), (@<channel list>)
SOURce:MULTitone:TONE:VOLTage? (<tone list>),
(@<channel list>)
```

Description

Sets the voltage of the tone(s) in the multitone waveform for the specified channel(s). The query returns the voltage of the tone(s) of the selected channel(s). Multiple responses are separated by commas.

Parameters

Туре	Range of values	Default value
Numeric	Unbalanced	1 Vrms
	0 to 8 Vrms (0 to 11.3 Vp)	
	Balanced	
	0 to 16 Vrms (0 to 22.6 Vp)	
Discrete	One or more tones.	Required
	• (1) for tone 1	parameter
	 (1,2) for tone 1 and 2 	
	 (1:10) for tone 1 through 10 	
Numeric	One or more channels.	Required
	(@1) or (@2) for single channel(@1,2) for channel 1 and 2	parameter
	Numeric Discrete	Numeric Unbalanced 0 to 8 Vrms (0 to 11.3 Vp) Balanced 0 to 16 Vrms (0 to 22.6 Vp) Discrete One or more tones. • (1) for tone 1 • (1,2) for tone 1 and 2 • (1:10) for tone 1 through 10 Numeric One or more channels. • (@1) or (@2) for single channel

Remarks

• This setting is only applicable for the multitone waveform. Use the SOURce:FUNCtion command to select the multitone waveform type.

Source Subsystem

 You can also include a multiplier for the unit, for example, mVrms. The 'm' is the multiplier for the unit Vrms.

Examples

The following command sets the voltage of the tone 5 and tone 6 for channel 1 to 0.5 Vrms.

```
SOUR: MULT: TONE: VOLT 0.5, (5,6), (@1)
```

The following query returns the voltage of tone 5 and tone 6 for channel 1.

```
SOUR: MULT: TONE: VOLT? (5,6), (@1)
```

Typical response: 5.000000E-01,5.000000E-01

SOURce:MULTitone:TONE:PHASe

Syntax

```
SOURce:MULTitone:TONE:PHASe <phase>, (<tone
list>), (@<channel list>)
SOURce:MULTitone:TONE:PHASe? (<tone list>),
(@<channel list>)
```

Description

Sets the phase of the tone(s) in the multitone waveform for the specified channel(s). The query returns the phase of the tone(s) of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
phase	Numeric	180 ~ 179,99	0
tone list	Discrete	One or more tones. • (1) for tone 1 • (1,2) for tone 1 and 2 • (1:10) for tone 1 through 10	Required parameter
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

This setting is only applicable for the multitone waveform. Use the SOURce: FUNCtion command to select the multitone waveform type.

Examples

The following command sets the phase of the tone 5 and tone 6 for channel 1 to 90 $^{\circ}.$

```
SOUR: MULT: TONE: PHAS 90, (5,6), (@1)
```

The following query returns the phase of tone 5 and tone 6 for channel 1.

```
SOUR: MULT: TONE: PHAS? (5,6), (@1)
```

Typical response: 9.000000E+01,9.000000E+01

SOURce:MULTitone:TONE:PHASe:RANDomize

Syntax

SOURce:MULTitone:TONE:PHASe:RANDomize
(@<channel list>)

Description

Randomizes the phase of all the tones in the multitone waveform for the specified channel(s).

Parameter

Item	Туре	Range of values	Default value
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

This setting is only applicable for the multitone waveform. Use the SOURce: FUNCtion command to select the multitone waveform type.

Examples

The following command randomizes the phase of all the tones for channel 1.

SOUR: MULT: TONE: PHAS: RAND (@1)

SOURce:DIGital:FUNCtion

Syntax

SOURce:DIGital:FUNCtion <waveform type>
SOURce:DIGital:FUNCtion?

Description

Sets the digital generator waveform type. The query returns the waveform type.

The waveform types with their corresponding <waveform type> parameters are listed as follows.

SINE	Sine waveform
SBURst	Sine burst waveform
STEReo	Stereo waveform
VPHase	Variable phase waveform
DUAL	Dual waveform
SMPTe11	SMPTE IMD 1 to 1 waveform
SMPTe41	SMPTE IMD 4 to 1 waveform
SMPTe101	SMPTE IMD 10 to 1 waveform
DFDiec118	DFD IEC 60118 waveform
DFDiec268	DFD IEC 60268 waveform
SQUare	Square waveform
WGAussian	Gaussian statistic distribution noise signal
WRECtangular	Rectangular statistic distribution noise signal
TNOise	Triangular statistic distribution noise signal
PNOise	Pink noise
CONStant	Constant value
MONotonicity	Monotonicity
WZERo	Walking zero
WONE	Walking one

Source Subsystem

MULTitone Multitone waveform ARBitrary Arbitrary waveform

Parameter

Item	Туре	Range of values	Default value
waveform type	Discrete	SINE, DUAL, STEReo, SBURst, VPHase, SMPTe11, SMPTe41, SMPTe101, DFDiec118, DFDiec268, SQUare, WGAussian, WRECtagular, TNOise, PNOise, CONStant, MONotonicity, WZERo, WONE, MULTitone, or ARBitrary	SINE

Remarks

- If you change the waveform type, the particular parameter values of the previous waveform will be set to the default values of the current waveform.
- Refer to "Appendix C: Waveform Parameters" on page 575 for the configurable parameters of the corresponding waveform types.

Examples

The following command sets the waveform type to Square.

SOUR: DIG: FUNC SQU

The following query returns the waveform type.

SOUR: DIG: FUNC?

Typical response: SQU

SOURce:DIGital:DITHer:TYPE

Syntax

SOURce:DIGital:DITHer:TYPE <dither>

SOURce:DIGital:DITHer:TYPE?

Description

Sets the dither type of the digital generator signal. The query returns the dither type of the digital generator signal.

Parameter

Item	Туре	Range of values	Default value
dither	Discrete	OFF, TRlangular, or RECTangular	OFF

Examples

The following commands set the dither type of the digital generator signal to triangular.

SOUR: DIG: DITH: TYPE TRI

The following query returns the dither type of the digital generator signal.

SOUR: DIG: DITH: TYPE?

Typical response: TRI

SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPLitude]

Syntax

SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPL
itude] <voltage>[<unit>], (@<channel list>)
SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPL
itude]? (@<channel list>)

Description

Sets the signal amplitude level for the specified digital channel(s). The query returns the amplitude of the selected digital channel(s) in FFS. Multiple responses are separated by commas.

Parameters

ltem	Туре	Range of values	Default value
voltage	Numeric	0 to 1 FFS (-1 FFS to 1 FFS for constant value)	100 mFFS
unit	Discrete	Vrms, Vpp, Vp, dBV, dBu, FFS, dBFS, or pctFS	FFS
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This command is not applicable for Monotonicity, Walking One, and Walking Zero waveform types.
- The amplitude is dependent on the DC offset of the signal. When the DC offset and amplitude are added together, it must not exceed the maximum voltage of 1 FFS. The relationship between the amplitude and DC offset is as follows.

Amplitude ≤1 FFS - |DC Offset|

- For Constant Value waveform, both channel 1 and 2 are sharing the same amplitude parameter. This means that when you change the amplitude value for channel 1, the amplitude for channel 2 will change accordingly to the same value and vice versa. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for more information.
- For Sine, Stereo, Square, noise, and Arbitrary waveforms, the amplitude values for channel 1 and 2 can be different. These waveforms are sharing the same DC offset parameter for both its channels. So, when setting the amplitude, make sure that the added value for the DC offset and amplitude do not exceed the maximum voltage of 1 FFS at both channels.
- This command is used to set the amplitude of the composite signal if the dual waveform is selected. Use the SOURce:DIGital:VOLTage:RATio command to set the amplitude ratio of the second component over the first component.
- If the amplitude setting is invalid, the -222, "Data out of range" error will be generated and the amplitude value will be clipped to the maximum value allowed.
- If Constant Value waveform is selected, the unit allowed is V, FFS, dBFS, and pctFS. The -131,"Invalid suffix" error will be generated if you select other units.
- You can also include a multiplier for the unit. For example, mFFS. The 'm' is the multiplier for the unit FFS.

Examples

The following command sets the amplitude level for channel 1 to 0.5 FFS.

```
SOUR:DIG:VOLT 0.5FFS, (@D1)
```

The following query returns the amplitude level of channel 1 in FFS.

```
SOUR:DIG:VOLT? (@D1)
```

Typical response: 5.000000E-01

SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFSet

Syntax

```
SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:
OFFSet <offset>[<unit>], (@<channel list>)
SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:
OFFSet? (@<channel list>)
```

Description

Sets the signal DC offset level for the specified digital channel(s). The query returns the DC offset of the selected channel(s) in FFS. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
offset	Numeric	0 to 1 FFS	
unit	Discrete	V, FFS, dBFS, or pctFS	FFS
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

- This command is not applicable for Sine Burst, Variable Phase, Constant Value, Walking One, Walking Zero, and Multitone waveform.
- The DC offset parameter is channelless. This means both channel 1 and 2 will always have the same DC offset value. When a single channel is selected in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the DC offset and channels.

- "The DC offset is dependent on the amplitude of the signal to be generated for a particular channel. When the DC offset and amplitude are added together, it must not exceed the maximum voltage of 1 FFS. The relationship between the amplitude and DC offset is as follows.
 Amplitude ≤1 FFS |DC Offset|
- For Sine, Stereo, Square, Noise, and Arbitrary waveform, the amplitude values for channel 1 and 2 can be different. Both the channels at these waveforms are sharing the same DC offset parameter. When setting the DC offset, make sure that the added value for the DC offset and amplitude do not exceed the maximum voltage of 1 FFS at both channels.
- If the DC offset setting is invalid, the **-222, "Data out of range"** error will be generated and the DC offset value will be clipped to the maximum value allowed.
- You can also include a multiplier for the unit. For example, mFFS. The 'm' is the multiplier for the unit FFS.

Examples

The following command sets the DC offset for channel 1 to 0.1 FFS.

```
SOUR:DIG:VOLT:OFFS 0.1, (@D1)
```

The following query returns the DC offset values of channel 1 in FFS.

```
SOUR:DIG:VOLT:OFFS? (@D1)
```

Typical response: 1.000000E-01

SOURce:DIGital:VOLTage:RATio

Syntax

SOURce:DIGital:VOLTage:RATio <ratio>,
 (@<channel list>)

SOURce:DIGital:VOLTage:RATio? (@<channel list>)

Description

Sets the voltage ratio of the second component over the first component of the dual waveform for the specified digital channel(s) in percentage. The query returns the amplitude ratio of the selected channel(s) in percentage. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
ratio	Numeric	0 to 100%	100
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

- This setting is only applicable for the dual waveform. Use the SOURce: DIGital: FUNCtion command to select the dual waveform type.
- The ratio parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same ratio value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the ratio parameter and channels.

Examples

The following command sets the voltage ratio value for channel 1 to 50%.

```
SOUR:DIG:VOLT:RAT 50, (@D1)
```

The following query returns the voltage ratio values of channel 1 in percentage.

```
SOUR:DIG:VOLT:RAT? (@D1)
Typical response: 5.000E+01
```

SOURce:DIGital:FREQuency[<j>]

Syntax

```
SOURce:DIGital:FREQuency[<j>]
<frequency>[<unit>], (@<channel list>)
SOURce:DIGital:FREQuency[<j>]? (@<channel list>)
```

Description

Sets the signal frequency for the specified channel(s) in Hz. The query returns the frequency of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameter

Item	Туре	Range of values	Default value
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Refer to "Appendix A: Waveform Frequency Range and Default Values" on page 568 for the <frequency> parameter.

Source Subsystem

Remarks

- The <j> parameter represents 1 or 2.
 - For the SMPTE IMD 1:1, 4:1, and 10:1 waveforms, SOURce:DIGital:FREQuency:LOWer represents the lower frequency while SOURce:DIGital:FREQuency:UPPer represents the upper frequency.
 - For the dual waveform, SOURce:DIGital:FREQuency1 represents the frequency of the first sine component while SOURce:DIGital:FREQuency2 represents the frequency of the second sine component.
 - For the DFD IEC 60118 waveform, use SOURce:DIGital:FREQuency:Upper to set the upper frequency and the SOURce:DIGital:FREQuency:DIFFerence command to set the frequency difference.
 - For the DFD IEC 60268 waveform, use the SOURce:DIGital:FREQuency:DIFFerence command to set the frequency difference and the SOURce:DIGital:FREQuency:CENTer command to set the center frequency.
- The frequency setting is not applicable for the constant value, noise, monotonicity, walking one, walking zero, multitone, and arbitrary waveforms.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.
- Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the frequency parameter and channels.

Examples

The following command sets the sine waveform frequency for channel 1 to 5 kHz.

```
SOUR:DIG:FREQ 5000, (@D1)
```

The following query returns the frequency value of channel 1 in Hz.

SOUR:DIG:FREQ? (@D1)

Typical response: 5.000000E+03

SOURce:DIGital:FREQuency:CENTer

Syntax

```
SOURce:DIGital:FREQuency:CENTer
<frequency>[<unit>], (@<channel list>)
SOURce:DIGital:FREQuency:CENTer?
(@<channel list>)
```

Description

Sets the center frequency of the DFD IEC 60268 waveform for the specified channel(s) in Hz. The center frequency determines the frequency for the two tones of the DFD IEC 60268 signal are spaced in equal increments above and below. The query returns the center frequency value of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	3 kHz to 79 kHz	10 kHz
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Source Subsystem

Remarks

- This setting is only applicable for the DFD IEC 60268 waveform. Use the SOURce:DIGital:FUNCtion command to select the DFD IEC 60268 waveform type.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.
- The center frequency parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same center frequency value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the center frequency parameter and channels.

Examples

The following command sets the center frequency value for channel 1 and 2 to 5 kHz.

```
SOUR:DIG:FREQ:CENT 5kHz, (@D1,D2)
```

The following query returns the center frequency values of channel 1 and 2 in Hz.

```
SOUR:DIG:FREO:CENT? (@D1,D2)
```

Typical response: 5.000000E+03,5.000000E+03

SOURce:DIGital:FREQuency:DIFFerence

Syntax

SOURce:DIGital:FREQuency:DIFFerence
<frequency>[<unit>], (@<channel list>)
SOURce:DIGital:FREQuency:DIFFerence?
(@<channel list>)

Description

Sets the frequency difference of the DFD IEC 60268 and DFD IEC 60118 waveforms for the specified channel(s) in Hz. The frequency difference determines the difference frequency (spacing) between the two tones of the DFD IEC 60268 and DFD IEC 60118 signals. The query returns the frequency difference of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	80 Hz to 2 kHz	80 Hz
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

- This setting is only applicable for the DFD IEC 60118 and DFD IEC 60268 waveforms. Use the SOURce:DIGital:FUNCtion command to select either one of these two waveform types.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.

Source Subsystem

• The difference frequency parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same difference frequency value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the difference frequency parameter and channels.

Examples

The following command sets the frequency difference value for channel 1 and 2 to 100 Hz.

```
SOUR: DIG: FREQ: DIFF 100Hz, (@D1, D2)
```

The following query returns the frequency difference values of channel 1 and 2 in Hz.

```
SOUR:DIG:FREQ:DIFF? (@D1,D2)
```

Typical response: 1.000000E+02,1.000000E+02

SOURce:DIGital:FREQuency:UPPer

Syntax

```
SOURce:DIGital:FREQuency:UPPer
<frequency>[<unit>], (@<channel list>)
SOURce:DIGital:FREQuency:UPPer?
(@<channel list>)
```

Description

Sets the upper frequency of the DFD IEC 60118, SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms for the specified channel(s) in Hz. The upper frequency determines the frequency of the higher frequency tone in the two-tone waveform. The query returns the upper frequency of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	Refer to "Appendix A: Waveform Frequency Range and Default Values" on page 568	3 kHz
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the DFD IEC 60118, SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms. Use the SOURce:DIGital:FUNCtion command to select either one of these four waveform types.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.
- The upper frequency parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same upper frequency value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the upper frequency parameter and channels.

Examples

The following command sets the upper frequency values for channel 1 and 2 to 3 kHz.

```
SOUR: DIG: FREQ: UPP 3kHz, (@D1,D2)
```

The following query returns the upper frequency values of channel 1 and 2 in Hz.

```
SOUR:DIG:FREQ:UPP? (@D1,D2)
```

Typical response: 3.000000E+03,3.000000E+03

SOURce:DIGital:FREQuency:LOWer

Syntax

```
SOURce:DIGital:FREQuency:LOWer
<frequency>[<unit>], (@<channel list>)
SOURce:DIGital:FREQuency:LOWer?
(@<channel list>)
```

Description

Sets the lower frequency of the SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms for the specified channel(s) in Hz. The lower frequency determines the frequency of the lower frequency tone in the two-tone waveform. The query returns the lower frequency of the selected channel(s) in Hz. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	40 Hz to 500 Hz	60 Hz
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

- This setting is only applicable for the SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms. Use the SOURce:DIGital:FUNCtion command to select either one of these three waveform types.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.

• The lower frequency parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same lower frequency value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the lower frequency parameter and channels.

Examples

The following command sets the lower frequency value for channel 1 and 2 to 80 Hz.

```
SOUR:DIG:FREQ:LOW 80Hz, (@D1,D2)
```

The following query returns the lower frequency values of channel 1 and 2 in Hz.

```
SOUR: DIG: FREQ: LOW? (@D1, D2)
```

Typical response: 8.000000E+01,8.000000E+01

SOURce:DIGital:SBURst:ONTime

Syntax

```
SOURce:DIGital:SBURst:ONTime <on time>,
  (@<channel list>)
SOURce:DIGital:SBURst:ONTime? (@<channel list>)
```

Description

Sets the burst on time of the sine burst waveform for the specified channel(s) in number of cycles. The burst on time determines the number of cycles at which the amplitude is at the highest level. The query returns the burst on time of the selected channel(s) in number of cycles. Multiple responses are separated by commas.

Source Subsystem

Parameters

Item	Туре	Range of values	Default value
on time	Numeric	1 to 65534	1
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the sine burst waveform. Use the SOURce:DIGital:FUNCtion command to select the waveform type.
- The burst on time must be smaller than the burst period for the sine burst waveform.
- The burst on time parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same burst on time value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the burst on time parameter and channels.

Examples

The following command sets the sine burst on time for channel 1 to 1000 cycles.

SOUR:DIG:SBUR:ONT 1000, (@D1)

The following query returns the sine burst on time of channel 1 in number of cycles.

SOUR:DIG:SBUR:ONT? (@D1)

Typical response: 1000

SOURce:DIGital:SBURst:PERiod

Syntax

```
SOURce:DIGital:SBURst:PERiod <period>,
  (@<channel list>)
SOURce:DIGital:SBURst:PERiod? (@<channel list>)
```

Description

Sets the burst period of the sine burst waveform for the specified channel(s) in number of cycles. The burst period determines the number of cycles from the beginning of one burst to the beginning of the next burst. The query returns the burst period of the selected channel(s) in number of cycles. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
period	Numeric	2 to 65535	3
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

- This setting is only applicable for the sine burst waveform. Use the SOURce:DIGital:FUNCtion command to select the waveform type.
- The burst period must be greater than the burst on time for the sine burst waveform.

Source Subsystem

• The burst period parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same burst period value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the burst period parameter and channels.

Examples

The following command sets the sine burst period for channel 1 to 5000 cycles.

```
SOUR:DIG:SBUR:PER 5000, (@D1)
```

The following query returns the sine burst period of channel 1 in number of cycles.

```
SOUR:DIG:SBUR:PER? (@D1)
```

Typical response: 5000

SOURce:DIGital:SBURst:LOWLevel

Syntax

```
SOURce:DIGital:SBURst:LOWLevel <low level>,
  (@<channel list>)
SOURce:DIGital:SBURst:LOWLevel?
  (@<channel list>)
```

Description

Sets the amplitude ratio of burst on to burst off for the sine burst waveform for the specified channel(s) in percentage. The query returns the low level of the selected channel(s) in percentage. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
low level	Numeric	0 to 100 %	50 %
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the sine burst waveform. Use the SOURce:DIGital:FUNCtion command to select the waveform type.
- The low level parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same low level value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the low level parameter and channels.

Examples

The following command sets the sine burst low level for channel 1 to 50%.

SOUR:DIG:SBUR:LOWL 50, (@D1)

The following query returns the sine burst low level of channel 1 in percentage.

SOUR:DIG:SBUR:LOWL? (@D1)

Typical response: 5.000000E+01

SOURce:DIGital:SAMPle

Syntax

```
SOURce:DIGital:SAMPle <sample>,
  (@<channel list>)
SOURce:DIGital:SAMPle? (@<channel list>)
```

Description

Sets the samples per step of the Monotonicity, Walking Zero, and Walking One waveform for the specified channel(s). The query returns the samples per step of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
low level	Numeric	1 to 32768 (Monotonicity) 1 to 65535 (Walking Zero and Walking One)	1 (Monotonicity) 48000 (Walking Zero and Walking One)
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

• This setting is only applicable for the Monotonicty, Walking Zero, and Walking One waveform. Use the SOURce:DIGital:FUNCtion command to select either one of these three waveform types.

• The samples per step parameter is not dependent on the channels. This means that both channel 1 and 2 will always have the same samples per step value. If you only select a single channel in the command, the setting is applied to both channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between the samples per step parameter and channels.

Examples

The following command sets the samples per step for channel 1 to 1000 steps.

```
SOUR:DIG:SAMP 1000, (@D1)
```

The following query returns the samples per step of channel 1.

```
SOUR:DIG:SAMP? (@D1)
Typical response: 1000
```

SOURce:DIGital:PHASe[:ADJust]

Syntax

```
SOURce:DIGital:PHASe[:ADJust] <phase>,
  (@<channel list>)
SOURce:DIGital:PHASe[:ADJust]? (@<channel list>)
```

Description

Sets the phase offset value of the selected channel with reference to the digital generator channel 1 in degree. The query returns the phase of the selected channel(s) in degree. Multiple responses are separated by commas.

Source Subsystem

Parameters

Item	Туре	Range of values	Default value
phase	Numeric	–180 $^{\circ}$ to 179.99 $^{\circ}$	0
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the variable phase waveform. Use the SOURce:DIGital:FUNCtion command to select the variable phase waveform type.
- Channel 1 is used as reference channel and will always have the value of 0°. Therefore, this command is not applicable for channel 1.

Examples

The following command sets the phase for channel 2 to 100 degrees with reference to channel 1.

SOUR: DIG: PHAS 100, (@D2)

The following query returns the phase of channel 2 with reference to channel 1.

SOUR:DIG:PHAS? (@D2)

Typical response: 1.000000E+02

SOURce:DIGital:MULTitone:FREQuency:STARt

Syntax

SOURce:DIGital:MULTitone:FREQuency:STARt
<frequency>[<unit>], (@<channel list>)
SOURce:DIGital:MULTitone:FREQuency:STARt?
(@<channel list>)

Description

Sets the start frequency of the multitone waveform for the specified channel(s). The start frequency defines the lowest tone frequency in the multitone waveform. The query returns the start frequency of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	2 Hz to (0.45 x sampling rate) Hz	1 kHz
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.
- The start frequency parameter is channel based. This means that channel 1 and 2 can have different start frequency values. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between start frequency parameter and channels.

Source Subsystem

If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the start frequency value for channel 1 to 5 kHz.

```
SOUR: DIG: MULT: FREQ: STAR 5000, (@D1)
```

The following query returns the start frequency value of channels 1 in Hz.

```
SOUR:DIG:MULT:FREQ:STAR? (@D1)
```

Typical response: 5.000000E+03

SOURce:DIGital:MULTitone:FREQuency:STOP

Syntax

```
SOURce:DIGital:MULTitone:FREQuency:STOP
<frequency>[<unit>], (@<channel list>)
SOURce:DIGital:MULTitone:FREQuency:STOP?
(@<channel list>)
```

Description

Sets the stop frequency of the multitone waveform for the specified channel(s). The stop frequency defines the highest tone frequency in the multitone waveform. The query returns the stop frequency of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	2 Hz to (0.45 x sampling rate) Hz	5 kHz
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.
- The stop frequency parameter is channel based. This means that channel 1 and 2 can have different stop frequency values. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between stop frequency parameter and channels.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the stop frequency value for channel 1 to 10 kHz.

```
SOUR:DIG:MULT:FREQ:STOP 10kHz, (@D1)
```

The following query returns the stop frequency value of channels 1 in Hz.

```
SOUR:DIG:MULT:FREQ:STOP? (@D1)
```

Typical response: 1.000000E+04

SOURce:DIGital:MULTitone:FREQuency:SPACing

Syntax

SOURce:DIGital:MULTitone:FREQuency:SPACing
<spacing>, (@<channel list>)
SOURce:DIGital:MULTitone:FREQuency:SPACing?
(@<channel list>)

Description

Sets the frequency spacing type between the start and stop frequency of the multitone waveform for the specified channel(s). The query returns the frequency spacing type of the selected channel(s). Multiple responses are separated by commas.

LINear	Linear frequency spacing
LOG	Logarithmic frequency spacing

Parameters

Item	Туре	Range of values	Default value
spacing	Discrete	LINear or LOG	LINear
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

• This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.

- The frequency spacing parameter is channel based. This means that channel 1 and 2 can have different frequency spacing values. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between frequency spacing parameter and channels.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the frequency spacing for channel 1 to Log.

```
SOUR: DIG: MULT: FREQ: SPAC LOG, (@D1)
```

The following query returns the frequency spacing type of channel 1.

```
SOUR:DIG:MULT:FREQ:SPAC? (@D1)
```

Typical response: LOG

SOURce:DIGital:MULTitone:COUNt

Syntax

```
SOURce:DIGital:MULTitone:COUNt <tone count>,
  (@<channel list>)
SOURce:DIGital:MULTitone:COUNt?
  (@<channel list>)
```

Description

Sets the tones of the multitone waveform for the specified channel(s). Tones refer to the number of signal frequency components. The query returns the number of tones of the selected channel(s). Multiple responses are separated by commas.

Source Subsystem

Parameters

Item	Туре	Range of values	Default value
tone count	Numeric	1 to 64	5
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- The tone count parameter is channel based. This means that channel 1 and 2 can have different tone count values. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between tone count parameter and channels.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following commands set the tones for channel 1 and 2 to 3 and 15 respectively.

```
SOUR:DIG:MULT:COUN 3, (@D1)
SOUR:DIG:MULT:COUN 15, (@D2)
```

The following query returns the number of tones of channel 1 and 2.

```
SOUR:DIG:MULT:COUN? (@D1,D2)
```

Typical response: 3,15

SOURce:DIGital:MULTitone:CRESt?

Syntax

SOURce:DIGital:MULTitone:CRESt?
(@<channel list>)

Description

Queries the crest factor of the multitone waveform for the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- The crest factor is channel based. This means that channel 1 and 2 can have different crest factor values. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between crest factor and channels.

Examples

The following query returns the crest factor of multitone waveform for channel 1.

SOUR:DIG:MULT:CRESt? (@D1)

Typical response: 1.4142000E+0

SOURce:DIGital:MULTitone:TONE:CLEar

Syntax

SOURce:DIGital:MULTitone:TONE:CLEar
(@<channel list>)

Description

Clears all the tones of the multitone waveform for the specified channel(s).

Parameters

Item	Туре	Range of values	Default value
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- After all the tones are cleared, an initial tone with 1 kHz frequency, 1 FFS amplitude, and 0 $^{\circ}$ will be the default.
- The command is channel based. This means that the command can be applied differently to channel 1 and 2channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between this command and channels.

Examples

The following command clears all the tones of the multitone waveform for channel 1.

SOUR:DIG:MULT:TONE:CLE (@D1)

SOURce:DIGital:MULTitone:TONE:ADD

Syntax

SOURce:DIGital:MULTitone:TONE:ADD <index>,
<frequency>[<unit>], <voltage>[<unit>], <phase>,
(@<channel list>)

Description

Adds a customized tone into the multitone waveform for the specified channel(s).

Parameters

Item	Туре	Range of values	Default value
index	Numeric	0 to 63	0
frequency	Numeric	2 Hz to (0.45 x sampling rate) Hz	1 kHz
voltage	Numeric	0 to 1 FFS	1 FFS
unit	Discrete	Vrms, Vpp, Vp, dBV, dBu, FFS, dBFS, or pctFS	FFS
phase	Numeric	–180 ~ 179.99	0
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- This command will add a customized tone into the existing multitone waveform. The position of the added tone will be determined by the index. The index must be less than the total number of tones.

Source Subsystem

- The command is channel based. This means that the command can be applied differently to channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between this command and channels.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command adds a 5 kHz frequency, 0.5 FFS voltage, and $80\,^\circ$ phase tone to the current multitone waveform for channel 1 at position 5.

SOUR:DIG:MULT:TONE:ADD 4, 5000, 0.5, 80, (@D1)

SOURce:DIGital:MULTitone:TONE:DELete

Syntax

SOURce:DIGital:MULTitone:TONE:DELete <index>,
(@<channel list>)

Description

Deletes a specific tone from the multitone waveform for the specified channel(s).

Parameters

Item	Туре	Range of values	Default value
index	Numeric	0 to 63	0
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- This command will delete a tone from the existing multitone waveform. The deleted tone will be determined by the index. The index must be less than the total number of tones.
- The command is channel based. This means that the command can be applied differently to channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between this command and channels.

Examples

The following command deletes the tone 5 of the multitone waveform for channel 1.

```
SOUR:DIG:MULT:TONE:DEL 4, (@D1)
```

SOURce:DIGital:MULTitone:TONE:FREQuency

Syntax

```
SOURce:DIGital:MULTitone:TONE:FREQuency
<frequency>[<unit>], (<tone list>),
  (@<channel list>)
SOURce:DIGital:MULTitone:TONE:FREQuency? (<tone list>), (@<channel list>)
```

Description

Sets the frequency of the tone(s) in the multitone waveform for the specified channel(s). The query returns the frequency of the tone(s) of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	2 Hz to (0.45 x sampling rate) Hz	1 kHz
tone list	Discrete	One or more tones. • (1) for tone 1 • (1,2) for tone 1 and 2 • (1:10) for tone 1 through 10	Required parameter
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- You can also include a multiplier for the unit, for example, kHz. The 'k' is the multiplier for the unit Hz.
- The command is channel based. This means that the command can be applied differently to channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between this command and channels.
- If there are tones with the same frequency, the
 -221,"Settings Conflict" error will be generated and the
 duplicated tone with the same frequency will be removed.

Examples

The following command sets the frequency of the tone 5 for channel 1 to 2 kHz.

```
SOUR:DIG:MULT:TONE:FREQ 2kHz, (5), (@D1)
```

The following query returns the frequency of tone 5 and tone 6 for channel 1.

```
SOUR:DIG:MULT:TONE:FREQ? (5,6), (@D1)
```

Typical response: 2.000000E+03,3.000000E+03

SOURce:DIGital:MULTitone:TONE:VOLTage

Syntax

```
SOURce:DIGital:MULTitone:TONE:VOLTage
<voltage>[<unit>], (<tone list>),
(@<channel list>)
SOURce:DIGital:MULTitone:TONE:VOLTage? (<tone list>), (@<channel list>)
```

Description

Sets the voltage of the tone(s) in the multitone waveform for the specified channel(s). The query returns the voltage of the tone(s) of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
voltage	Numeric	0 to 1 FFS	1 FFS
unit	Discrete	Vrms, Vpp, Vp, dBV, dBu, FFS, dBFS, or pctFS	FFS
tone list	Discrete	One or more tones. • (1) for tone 1 • (1,2) for tone 1 and 2 • (1:10) for tone 1 through 10	Required parameter
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- You can also include a multiplier for the unit, for example, mFFS. The 'm' is the multiplier for the unit FFS.

Source Subsystem

• The command is channel based. This means that the command can be applied differently to channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between this command and channels.

Examples

The following command sets the voltage of the tone 5 and tone 6 for channel 1 to 0.5 FFS.

```
SOUR: DIG: MULT: TONE: VOLT 0.5, (5,6), (@D1)
```

The following query returns the voltage of tone 5 and tone 6 for channel 1.

```
SOUR:DIG:MULT:TONE:VOLT? (5,6), (@D1)
```

Typical response: 5.000000E-01,5.000000E-01

SOURce:DIGital:MULTitone:TONE:PHASe

Syntax

```
SOURce:DIGital:MULTitone:TONE:PHASe <phase>,
  (<tone list>), (@<channel list>)
SOURce:DIGital:MULTitone:TONE:PHASe? (<tone
list>), (@<channel list>)
```

Description

Sets the phase of the tone(s) in the multitone waveform for the specified channel(s). The query returns the phase of the tone(s) of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
phase	Numeric	180 ~ 179,99	0
tone list	Discrete	One or more tones. • (1) for tone 1 • (1,2) for tone 1 and 2 • (1:10) for tone 1 through 10	Required parameter
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform.

 Use the SOURce:DIGital:FUNCtion command to select
 the multitone waveform type.
- The command is channel based. This means that the command can be applied differently to channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between this command and channels.

Examples

The following command sets the phase of the tone 5 and tone 6 for channel 1 to 90° .

```
SOUR:DIG:MULT:TONE:PHAS 90, (5,6), (@D1)
```

The following query returns the phase of tone 5 and tone 6 for channel 1.

```
SOUR:DIG:MULT:TONE:PHAS? (5,6), (@D1)
```

Typical response: 9.000000E+01, 9.000000E+01

SOURce:DIGital:MULTitone:TONE:PHASe:RANDomize

Syntax

SOURce:DIGital:MULTitone:TONE:PHASe:RANDomize
(@<channel list>)

Description

Randomizes the phase of all the tones in the multitone waveform for the specified channel(s).

Parameter

Item	Туре	Range of values	Default value
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable for the multitone waveform. Use the SOURce:DIGital:FUNCtion command to select the multitone waveform type.
- The command is channel based. This means that the command can be applied differently to channel 1 and 2. Refer to "Appendix E: Relationship between Digital Waveform Parameters and Channels" on page 580 for the relationship between this command and channels.

Examples

The following command randomized the phase of all the tones for channel 1.

SOUR:DIG:MULT:TONE:PHAS:RAND (@D1)

SOURce:DIGital:REFerence:VOLTage

Syntax

SOURce:DIGital:REFerence:VOLTage <voltage>
SOURce:DIGital:REFerence:VOLTage?

Description

Sets the voltage reference of the digital generator in V. The query returns the voltage reference of the digital generator in V.

Parameter

Item	Туре	Range of values	Default value
voltage	Numeric	0 < reference voltage ≤ 1.0E+9	1

Examples

The following command sets the voltage reference of the digital generator to 5 V.

SOUR:DIG:REF:VOLT 5

The following query returns the voltage reference of the digital generator in V.

SOUR: DIG: REF: VOLT?

Typical response: 5.000000E+00

Source Subsystem

SOURce:DIGital:BERT[:MODE]

Syntax

SOURce:DIGital:BERT[:MODE] <mode>
SOURce:DIGital:BERT[:MODE]?

Description

Enables or disables the Bit Error Rate Test (BERT) mode. The query returns the BERT mode state.

Parameter

Item	Туре	Range of values	Default value
mode	Discrete	ON or OFF	OFF

Remarks

- This command must be sent prior to the other SOURce:DIGital:BERT:... commands.
- When the BERT mode is enabled, you are only able to send BERT commands.

Examples

The following command enables the BERT mode.

SOUR:DIG:BERT ON

The following query returns the BERT mode state.

SOUR: DIG: BERT?

Typical response: ON

SOURce:DIGital:BERT:PATTern:CATegory

Syntax

SOURce:DIGital:BERT:PATTern:CATegory <category>
SOURce:DIGital:BERT:PATTern:CATegory?

Description

Sets the pattern category of the Bit Error Rate Test (BERT). The query returns pattern category of the Bit Error Rate Test.

Parameter

Item	Туре	Range of values	Default value
category	Discrete	PSEudorandom or WCONstant	PSEudorandom

Remarks

- The command SOURce:DIGital:BERT[:MODE] must be sent prior to sending this command.
- When pseudorandom is selected, both channels will output pseudorandom pattern.
- When walking constant is selected, you can select different walking constant pattern types for different channels.

Examples

The following command sets the pattern category of the BERT to walking constant.

SOUR:DIG:BERT:PATT:CAT WCON

The following query returns the pattern category of the BERT.

SOUR: DIG: BERT: PATT: CAT?

Typical response: WCON

SOURce:DIGital:BERT:WCONstant:TYPE

Syntax

```
SOURce:DIGital:BERT:WCONstant:TYPE <type>,
  (@<channel list>)
SOURce:DIGital:BERT:WCONstant:TYPE?
  (@<channel list>)
```

Description

Sets the pattern type of the walking constant for the specified channel(s). The query returns the pattern type of the walking constant.

Parameters

Item	Туре	Range of values	Default value
type	Discrete	WONE, WZERo, or CUSTom	WONE
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- The command SOURce:DIGital:BERT[:MODE] must be sent prior to sending this command.
- The pattern type can be different for each channel.
- This command is valid when BERT pattern category is set to walking constant.
- Setting the type to CUSTom allows you to specify the constant value of the pattern. Refer to SOURce:DIGital:BERT:WCONstant[:VALue] command.

Examples

The following command sets the pattern type of the walking constant of channel 1 to walking zero.

```
SOUR:DIG:BERT:WCON:TYPE WZER, (@D1)
```

The following query returns the pattern type for the walking constant of channel 1.

```
SOUR:DIG:BERT:WCON:TYPE? (@D1)
```

Typical response: WZER

SOURce:DIGital:BERT:PSEudorandom:SEED

Syntax

```
SOURce:DIGital:BERT:PSEudorandom:SEED <seed>,
  (@<channel list>)
SOURce:DIGital:BERT:PSEudorandom:SEED?
  (@<channel list>)
```

Description

Sets the pseudorandom seed value for the specified channel(s). The query returns the pseudorandom seed value.

Parameters

Item	Туре	Range of values	Default value
seed	Hex	0x000001 to 0xFFFFFF	#H100000
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Source Subsystem

Remarks

- The command SOURce:DIGital:BERT[:MODE] must be sent prior to sending this command.
- The seed value can be different for each channel.
- This seed value is in hexadecimal format.
- This command is valid when BERT pattern category is set to pseudorandom.

Examples

The following command sets the pseudorandom seed value of channel 1 to 0xA00000.

```
SOUR:DIG:BERT:PSE:SEED #HA00000, (@D1)
```

The following query returns the pseudorandom seed value of channel 1.

```
SOUR:DIG:BERT:PSE:SEED? (@D1)
```

Typical response: #HA00000

SOURce:DIGital:BERT:WCONstant[:VALue]

Syntax

```
SOURce:DIGital:BERT:WCONstant[:VALue] <value>,
  (@<channel list>)
SOURce:DIGital:BERT:WCONstant[:VALue]?
  (@<channel list>)
```

Description

Sets the constant value for the custom walking constant pattern for the specified channel(s). The query returns the constant value.

Parameters

Item	Туре	Range of values	Default value
value	Hex	0x000001 to 0xFFFFFF	#H100000
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- The command SOURce:DIGital:BERT[:MODE] must be sent prior to sending this command.
- The constant value can be different for each channel.
- This constant value is in hexadecimal format.
- This command is valid when BERT pattern category is set to custom walking constant.
- If the constant value is set to either 0x7FFFFFFF or 0x8000000, the walking constant pattern type will be set to WZERO and WONE respectively.

Examples

The following command sets the constant value for channel 1 to 0x400000.

SOUR:DIG:BERT:WCON #H400000, (@D1)

The following query returns the constant value of channel 1.

SOUR:DIG:BERT:WCON? (@D1)

Typical response: #H400000

Source Subsystem

SOURce:DIGital:BERT:DURation

Syntax

SOURce:DIGital:BERT:DURation <duration>
SOURce:DIGital:BERT:DURation?

Description

Sets the duration of the bit error rate test (BERT) in seconds. The query returns the duration of the BERT.

Parameter

Item	Туре	Range of values	Default value
duration	Numeric	0.1 to 604800	10

Remarks

- The command SOURce:DIGital:BERT[:MODE] must be sent prior to sending this command.
- The duration must be greater than the reading interval set at SENSe:DIGital:BERT:INTerval.

Examples

The following command sets the duration for the BERT to 20 seconds.

SOUR:DIG:BERT:DUR 20

The following query returns the duration for the BERT.

SOUR:DIG:BERT:DUR?

Typical response: 2.000000E+01

SOURce:DIGital:BERT:BWIDth

Syntax

SOURce:DIGital:BERT:BWIDth <width>

SOURce: DIGital: BERT: BWIDth?

Description

Sets the pattern bit width of the bit error rate test (BERT). The query returns the pattern bit width of the BERT.

Parameter

Item	Туре	Range of values	Default value
width	Numeric	8 to 24	24

Remark

The command SOURce:DIGital:BERT[:MODE] must be sent prior to sending this command.

Examples

The following command sets the pattern bit width for the BERT to 24.

SOUR:DIG:BERT:BWID 24

The following query returns the duration for the BERT.

SOUR: DIG: BERT: BWID?

Typical response: 24

Sense Subsystem

The Sense subsystem provides the commands to select the U8903A measurement functions and configure the measurement settings for the analyzer and graph modes.

SENSe:VOLTage:RANGe:AUTO

Syntax

SENSe:VOLTage:RANGe:AUTO <mode>,

(@<channel list>)

SENSe: VOLTage: RANGe: AUTO? (@<channel list>)

Description

Disables or enables autoranging for voltage measurements for the specified channel(s). Autoranging allows the U8903A to automatically select the range for each measurement based on the input signal detected. The query returns the autoranging state of the selected channel(s) as 0 if the autoranging is disabled, or 1 if the autoranging is enabled. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
mode	Boolean	OFF(0) or ON(1)	ON
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- Selecting a discrete range using the SENSe:VOLTage:RANGe[:UPPER] command will disable the autoranging.
- Autoranging is enabled after a factory reset (*RST) command or instrument preset (SYSTem: PRESet) command.

Examples

The following commands disable autoranging for channel 1 but enable autoranging for channel 2.

```
SENS: VOLT: RANG: AUTO OFF, (@1)
SENS: VOLT: RANG: AUTO ON, (@2)
```

The following query returns the autoranging states for channel 1 and 2.

```
SENS: VOLT: RANG: AUTO? (@1,2)

Typical response: 0,1
```

SENSe:VOLTage:RANGe[:UPPer]

Syntax

```
SENSe:VOLTage:RANGe[:UPPer] <range>[<unit>],
  (@<channel list>)
SENSe:VOLTage:RANGe[:UPPer]? (@<channel list>)
```

Description

Sets the measurement range for voltage measurements for the specified channel(s) in V. The query returns the voltage range of the selected channel(s) in V. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
range	Numeric	400 mV, 800 mV, 1.6 V, 3.2 V, 6.4 V, 12.8 V, 25 V, 50 V, 100 V, or 140 V	Required parameter
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- Selecting a discrete range using this command will disable the autoranging on the specified channel(s).
- If the input signal is greater than the selected measurement range, an overload indication of 9.9E+37 will be generated.
- Autoranging is enabled after a factory reset (*RST) command or instrument preset (SYSTem: PRESet) command.
- If you set a value in between the selected measurement range, for example, 401 mV, it will clip the value to the upper range which is 800 mV.
- You can also include a multiplier for the unit, for example, mV. The 'm' is the multiplier for the unit V.

Examples

The following commands set the measurement range values to 400 mV and 3.2 V for channel 1 and 2 respectively.

```
SENS:VOLT:RANG 400mV, (@1)
SENS:VOLT:RANG 3.2V, (@2)
```

The following query returns the measurement range values for channel 1 and 2.

```
SENS: VOLT: RANG? (@1,2)
```

Typical response: 4.000000E-01,3.200000E+00

SENSe:MTIMe

Syntax

SENSe:MTIMe <measurement time>

SENSe:MTIMe?

Description

Sets the analyzer measurement time. The query returns the measurement time.

The measurement time values with their corresponding <measurement time> parameters are listed as follows.

GTRack	Gen Track
SP128	$1/128 \ s$
SP64	1/64 s
SP32	1/32 s
SP16	1/16 s
SP8	1/8 s
SP4	1/4 s
SP2	1/2 s
S1	1 s

Parameter

Item	Туре	Range of values	Default value
measurement time	Discrete	GTRack, SP128, SP64, SP32, SP16, SP8, SP4, SP2, or S1	GTRack

Remark

The selected measurement time applies for all channels.

Sense Subsystem

Examples

The following command sets the measurement time to 1/128 s.

SENS:MTIM SP128

The following query returns the measurement time.

SENS:MTIM?

Typical response: SP128

SENSe:VOLTage:DETector

Syntax

SENSe: VOLTage: DETector <detector type>, (@<channel list>)

SENSe:VOLTage:DETector? (@<channel list>)

Description

Sets the analyzer AC level detector for the specified channel(s). The query returns the detector type of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
detector type	Discrete	RMS, QPK, or VPP	RMS
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This command is only applicable if the selected measurement function is Vac.
- If VPP is selected, querying FETCh[:SCALar]? will return the AC voltage result in Vpp. If RMS is selected, the returned AC voltage result is in Vrms. If QPK is selected, the returned AC voltage result is in V.

Examples

The following commands set the detector types to RMS and Vpp for channel 1 and 2 respectively.

```
SENS: VOLT: DET RMS, (@1)
SENS: VOLT: DET VPP, (@2)
```

The following query returns the detector types for channel 1 and 2.

```
SENS: VOLT: DET? (@1,2)

Typical response: RMS, VPP
```

SENSe:FUNCtion<j>

Syntax

```
SENSe:FUNCtion<j> <function>, (@<channel list>)
SENSe:FUNCtion<j>? (@<channel list>)
```

Description

Sets the analyzer measurement function for the specified channel(s). The query returns the measurement function of the selected channel(s). Multiple responses are separated by commas.

Sense Subsystem

The measurement functions with their corresponding <function> parameters are listed as follows.

FREQuency	Frequency measurement
VAC	AC voltage measurement
VDC	DC voltage measurement
THDRatio	THD+N Ratio measurement
THDLevel	THD+N Level measurement
SINad	SINAD measurement
SNRatio	Signal-to-noise ratio measurement
NOISe	Noise Level measurement
IMD	SMPTE IMD measurement
SDFDiec118	DFD IEC 60118 2nd order measurement
TDFDiec118	DFD IEC 60118 3rd order measurement
SDFDiec268	DFD IEC 60268 2nd order measurement
TDFDiec268	DFD IEC 60268 3rd order measurement
PHASe	Phase measurement
DCRosstalk	Crosstalk (channel driven) measurement
MCRosstalk	Crosstalk (channel measured) measurement

Parameters

Item	Туре	Range of values	Default value
j	Numeric	SENS: FUNC1 indicates the first measurement function SENS: FUNC2 indicates the second measurement function	1
function	Discrete	FREQuency, VAC, VDC, THDRatio, THDLevel, SINad, SNRatio, NOISe, IMD, SDFDiec118, TDFDiec118, SDFDiec268, TDFDiec268, PHASe, DCRosstalk, or MCRosstalk	 FREQuency (first measurement function) VAC (second measurement function)
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- For the first measurement function, there are only three types of selectable functions comprising frequency, Vac, and Vdc. For the second measurement function, you can select any of the measurement functions listed above.
- You need to set the DC coupling (INPut:COUPling command) prior to setting the Vdc measurement function.
- If either phase, crosstalk (channel driven), or crosstalk (channel measured) is selected, you must also specify the reference channel using the SENSe:REFerence:CHANnel command. You must set the reference channel prior to sending the SENSe:FUNCtion command.
- If phase is selected for a particular channel, the measurement function for all channels will automatically change to phase.

- If crosstalk (channel driven) is selected for a particular channel, all channels will change to the crosstalk measurement. The measurement function for all channels except the reference channel will change to crosstalk (channel measured) and the measurement function for the reference channel will change to crosstalk (channel driven).
- If crosstalk (channel measured) is selected for a particular channel, all channels will change to the crosstalk measurement. The measurement function for all channels except the reference channel will change to crosstalk (channel driven) and the measurement function for the reference channel will change to crosstalk (channel measured).
- Refer to "Measuring the crosstalk" on page 486 for the programming example on measuring crosstalk.
- Noise Level is not applicable for the sweep measurement parameter selection.

Examples

To measure the DC voltage on channel 1, you can set Vdc as the first measurement function. Assume that the DC voltage is measured immediately without waiting for any bus or external trigger. The following commands are configured.

```
SENS:FUNC1 VDC, (@1)
TRIG:ANAL:SOUR IMM
INIT:ANAL (@1)
FETC? FUNC1, (@1)
```

NOTE

- When FETCh is queried, the measurement result will be returned in the unit as listed in "Appendix B: Units of the Measurement Function Returned Values" on page 571.
- For crosstalk measurements, a value of 0 dB or 100% will always be returned when FETCh is used to acquire the result of the reference channel.

The following query returns the measurement function of channel 1.

SENS: FUNC1? (@1)

Typical response: VDC

SENSe:FUNCtion<j>:UNIT

Syntax

```
SENSe:FUNCtion<j>:UNIT <unit>, (@<channel list>)
SENSe:FUNCtion<j>:UNIT? (@<channel list>)
```

Description

Specifies the unit for the measurement result (which is obtained using the FETCh command) of the corresponding function for the selected channel(s). The query returns the unit of the corresponding function for the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
j	Numeric	1 to 2	1
		 SENS: FUNC1 indicates the first measurement function SENS: FUNC2 indicates the second measurement function 	
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

For the <unit> range of values and formulas, refer to "Appendix B: Units of the Measurement Function Returned Values" on page 571.

Sense Subsystem

Remarks

The unit specified using this command will cause the measurement result to be returned in that unit. For example, changing the unit to dBV for the Vac function will return the measurement result obtained by the FETCh command in dBV.

Examples

The following commands set the AC voltage as the second measurement function in the unit dBV for both channels.

```
SENS:FUNC2 VAC, (@1,2)
SENS:FUNC2:UNIT dBV, (@1,2)
```

The following query returns the unit of the second measurement function for both channels.

```
SENS: FUNC2: UNIT? (@1,2)

Typical response: dBV, dBV
```

SENSe:REFerence:IMPedance

Syntax

```
SENSe:REFerence:IMPedance <impedance>,
  (@<channel list>)
SENSe:REFerence:IMPedance? (@<channel list>)
```

Description

Sets the reference impedance for the specified channel(s) in ohms (Ω) . The reference impedance is used for conversion of the measurement result in unit W or dBm. The query returns the reference impedance of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
impedance	Numeric	0 < impedance ≤ 1.0E+9	600 Ω
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

The reference impedance setting is only applicable for the Vac, Vdc, THD+N Level, and Noise Level measurement functions to specify the measurement results in W or dBm.

Examples

The following commands set the reference impedances to 600 Ω and 50 Ω for channel 1 and 2 respectively.

SENS:REF:IMP 600, (@1) SENS:REF:IMP 50, (@2)

The following query returns the reference impedances for channel 1 and 2.

SENS:REF:IMP? (@1,2)

Typical response: 6.000000E+02,5.000000E+01

Sense Subsystem

SENSe:REFerence:LEVel

Syntax

SENSe:REFerence:LEVel <level>, (@<channel list>)
SENSe:REFerence:LEVel? (@<channel list>)

Description

Sets the reference level for the specified channel(s) in V. The reference level is used for conversion of the measurement result in unit dBr or x. The query returns the reference level of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
level	Numeric	10 ⁻⁶ to 140	387.3 mV
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

The reference level setting is only applicable for the Vac, Vdc, THD+N Level, and Noise Level measurement functions to specify the measurement results in dBr or x.

Examples

The following commands set the reference levels to 200 mV and 500 mV for channel 1 and 2 respectively.

SENS:REF:LEV 0.2, (@1) SENS:REF:LEV 0.5, (@2) The following query returns the reference levels for channel 1 and 2.

SENS:REF:LEV? (@1,2)

Typical response: 2.000000E-01,5.000000E-01

SENSe:REFerence:CHANnel

Syntax

SENSe:REFerence:CHANnel <reference channel>
SENSe:REFerence:CHANnel?

Description

Sets the reference channel for the phase or crosstalk measurement functions. The query returns the reference channel.

Parameter

Item	Туре	Range of values	Default value
reference channel	Numeric	1 or 2	1

Examples

The following commands provide the sequence to measure crosstalk from channel 2 to 1.

SENS:REF:CHAN 2

SENS: FUNC2 DCR, (@1,2)

TRIG: ANAL: SOUR IMM

INIT: ANAL (@1)

FETC? FUNC2, (@1)

The following query returns the reference channel.

SENS: REF: CHAN?

Typical response: 2

SENSe:REFerence:FREQuency

Syntax

```
SENSe:REFerence:FREQuency <frequency>,
  (@<channel list>)
SENSe:REFerence:FREQuency? (@<channel list>)
```

Description

Sets the reference frequency for the specified channel(s) in Hz (Hertz). The reference frequency is used for conversion of the measurement result in unit Δ Hz (delta Hertz). The query returns the reference frequency of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	0 ≤ frequency ≤ 1.0E+9	0
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

The reference frequency setting is only applicable for the frequency measurement function to specify the measurement results in ΔHz .

Examples

The following commands set the reference frequencies to 100 Hz and 300 Hz for channel 1 and 2 respectively.

```
SENS:REF:FREQ 100, (@1)
SENS:REF:FREQ 300, (@2)
```

The following query returns the reference frequency for channel 1 and 2.

SENS:REF:FREQ? (@1,2)

Typical response: 1.000000E+02,3.000000E+02

SENSe:REFerence:RATio

Syntax

SENSe:REFerence:RATio <ratio>, (@<channel list>)
SENSe:REFerence:RATio? (@<channel list>)

Description

Sets the reference ratio for the specified channel(s) in dB. The reference ratio is used for conversion of the measurement result in unit ΔdB (delta decibel). The query returns the reference ratio of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
ratio	Numeric	-180 < ratio < 180	0
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

The reference ratio setting is only applicable for the SINAD and THD Ratio, DFD, IMD, crosstalk, and SNR measurement functions to specify the measurement results in Δ Hz.

Examples

The following commands set the reference ratio to 10 dB and 30 dB for channel 1 and 2 respectively.

SENS:REF:RAT 10, (@1)

Sense Subsystem

SENS:REF:RAT 30, (@2)

The following query returns the reference ratio for channel 1 and 2.

SENS:REF:RAT? (@1,2)

Typical response: 1.000000E+01,3.000000E+01

SENSe:REFerence:MEASured

Syntax

SENSe:REFerence:MEASured <measurement type>,
<source channel>, <@target channel list>

Description

Sets the last measurement result obtained from the specified measurement type of the selected source as the reference value for the corresponding target channels.

Parameters

Item	Туре	Range of values	Default value
measurement type	Discrete	LEVel, FREQuency or RATio	LEVel
source channel	Discrete	CH1 or CH2	Required parameter
target channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

• If there is no data in the last measurement or invalid data such as INF, this command will not have any effect; the previous reference value will be remain.

- If the measurement type selection is level, sending this command will affect the reference level which is set using SENSe:REFerence:LEVel. You can use the command SENSe:REFerence:LEVel? to query for the reference level.
- If the measurement type selection is frequency, sending this command will affect the reference frequency, which is set using SENSe:REFerence:FREQuency. You can use the command SENSe:REFerence:FREQuency? to query for the reference frequency.
- If the measurement type selection is ratio, sending this command will affect the reference ratio which is set using SENSe:REFerence:RATio. You can use the command SENSe:REFerence:RATio? to query for the reference ratio.

Examples

The following command set the measured Vac result of channel 1 as reference value for both channels.

```
SENS: REF: MEAS LEV, CH1, (@1:2)
```

The following query returns the reference level of the measured value. Assume that the measured Vac result for channel 1 is 1 $V_{\rm rms}$.

```
SENS:REF:LEV? (@1:2)
```

Typical response: 1.000000E+00

SENSe:FILTer:LPASs

Syntax

```
SENSe:FILTer:LPASs <low pass filter>,
  (@<channel list>)
SENSe:FILTer:LPASs? (@<channel list>)
```

Sense Subsystem

Description

Sets the low pass filter for the specified channel(s). The query returns the low pass filter type of the selected channel(s). Multiple responses are separated by commas.

The low pass filter types with their corresponding <low pass filter> parameters are listed as follows.

NONE	No low pass filter is applied
LP15	Low pass filter with 15 kHz cutoff frequency
LP20	Low pass filter with 20 kHz cutoff frequency
LP30	Low pass filter with 30 kHz cutoff frequency
LP80	Low pass filter with 80 kHz cutoff frequency
CUSTom	User-defined low pass filter

Parameters

Item	Туре	Range of values	Default value
low pass filter	Discrete	NONE, LP15, LP20, LP30, LP80 or CUSTom	NONE
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- To use a custom low pass filter, you need to load the custom filter data into the U8903A before you can use it. To load a custom filter data, use either the DATA:FILTer or MMEM:LOAD FILTEr, <filename> command.
- The command DATA:FILTer or MMEM:LOAD FILTer, <filename> must be sent prior to sending the SENSe:FILTer:LPASs command.

• If you switch from CUSTom to either NONE, LP15, LP20, LP30, or LP80, your previously downloaded information for the custom filter will be lost. You will need to redownload the filter information into the system. Refer to "Using the user-defined filter data" on page 493 for the information on how to use the custom filter.

Examples

The following commands set the low pass filter types to LP15 and LP30 for channel 1 and 2 respectively.

```
SENS:FILT:LPAS LP15, (@1)
SENS:FILT:LPAS LP30, (@2)
```

The following query returns the low pass filter types for channel 1 and 2.

```
SENS:FILT:LPAS? (@1,2)

Typical response: LP15,LP30
```

SENSe:FILTer:HPASs

Syntax

SENSe:FILTer:HPASs <high pass filter>,
 (@<channel list>)
SENSe:FILTer:HPASs? (@<channel list>)

Description

Sets the high pass filter for the specified channel(s). The query returns the high pass filter type of the selected channel(s). Multiple responses are separated by commas.

The high pass filter types with their corresponding <high pass filter> parameters are listed as follows.

NONE	No high pass filter is applied		
HP22	High pass filter with 22 Hz cutoff frequency		
HP100	High pass filter with 100 Hz cutoff frequency		
HP400	High pass filter with 400 Hz cutoff frequency		
CUSTom	User-defined high pass filter		

Parameters

Item	Туре	Range of values	Default value
high pass filter	Discrete	NONE, HP22, HP100, HP400, or CUSTom	NONE
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

 To use a custom high pass filter, you need to load the custom filter data into the U8903A before you can use it.
 To load a custom filter data, use either the DATA: FILTer or MMEM: LOAD FILTer, <filename> command.

- The command DATA:FILTer or MMEM:LOAD FILTer,
 <filename> must be sent prior to sending the
 SENSe:FILTer:HPASs command.
- If you switch from CUSTom to either NONE, HP22, HP100, or HP400, your previously downloaded information for the custom filter will be lost. You will need to redownload the filter information into the system. Refer to "Using the user-defined filter data" on page 493 for the information on how to use the custom filter.

Examples

The following commands set the high pass filter types to HP22 and HP100 for channel 1 and 2 respectively.

```
SENS:FILT:HPAS HP22, (@1)
SENS:FILT:HPAS HP100, (@2)
```

The following query returns the high pass filter types for channel 1 and 2.

```
SENS:FILT:HPAS? (@1,2)

Typical Response: HP22,HP100
```

SENSe:FILTer:WEIGhting

Syntax

```
SENSe:FILTer:WEIGhting <weighting filter>,
  (@<channel list>)
SENSe:FILTer:WEIGhting? (@<channel list>)
```

Description

Sets the weighting filter for the specified channel(s). The query returns the weighting filter type of the selected channel(s). Multiple responses are separated by commas.

Sense Subsystem

The weighting filter types with their corresponding <weighting filter> parameters are listed as follows.

NONE No weighting filter is applied

AWEighting A-Weighting filter
CCIR1k CCIR-1k weighted
CCIR2k CCIR-2k weighted

CMESsage C-Message CCITT CCITT

CUSTom User-defined arbitrary filter type including

Bandpass and Bandstop filters

Parameters

Item	Туре	Range of values	Default value
weighting filter	Discrete	NONE, AWEighting, CCIR1k, CCIR2k, CMESsage, CCITt, or CUSTom	NONE
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- The custom filter type includes the bandpass and bandstop arbitrary filters.
- To use a custom weighting pass filter, you need to load the custom filter data into the U8903A before you can use it. To load a custom filter data, use either the DATA:FILTer or MMEM:LOAD FILTER, <filename> command.
- The command DATA:FILTER or MMEM:LOAD FILTER, <filename> must be sent prior to sending the SENSe:FILTer:WEIGhting command.

• If you switch from CUSTom to either NONE, AWE, CCIR1k, CCIR2k, CMES, or CCIT, your previously downloaded information for the custom filter will be lost. You will need to redownload the filter information into the system. Refer to "Using the user-defined filter data" on page 493 for the information on how to use the custom filter.

Examples

The following commands set the weighting filter types to A-Weighting and C-Message for channel 1 and 2 respectively.

```
SENS:FILT:WEIG AWE, (@1)
SENS:FILT:WEIG CMES, (@2)
```

The following query returns the weighting filter types for channel 1 and 2.

```
SENS:FILT:WEIG? (@1,2)
Typical response: AWE,CMES
```

SENSe:FILTer:LEFT

Syntax

```
SENSe:FILTer:LEFT <left filter>
SENSe:FILTer:LEFT?
```

Description

Sets the HP8903B mode left filter.

Sense Subsystem

The left filter types with their corresponding <left filter> parameters are listed as follows.

NONE No weighting filter is applied

AWEighting A-Weighting filter
CCIR1k CCIR-1k weighted
CCIR2k CCIR-2k weighted

CMESsage C-Message CCITT CCITT

HP400 High pass filter with 400 Hz cutoff

frequency

Parameter

Item	Туре	Range of values	Default value
left filter	Discrete	NONE, AWEighting, CCIR1k, CCIR2k, CMESsage, CCITt, or HP400	CCITt

Examples

The following command sets the left filter type to HP400.

SENS:FILT:LEFT HP400

The following query returns the left filter type.

SENS:FILT:LEFT?

Typical response: HP400

SENSe:FILTer:RIGHt

Syntax

SENSe:FILTer:RIGHt <right filter>

SENSe:FILTer:RIGHt?

Description

Sets the HP8903B mode right filter.

The right filter types with their corresponding <right filter> parameters are listed as follows.

NONE No weighting filter is applied

AWEighting A-Weighting filter
CCIR1k CCIR-1k weighted
CCIR2k CCIR-2k weighted

CMESsage C-Message CCITT CCITT

HP400 High pass filter with 400 Hz cutoff

frequency

Parameters

Item	Туре	Range of values	Default value
left filter	Discrete	NONE, AWEighting, CCIR1k, CCIR2k, CMESsage, CCITt, or HP400	HP400

Examples

The following command sets the right filter type to HP400.

SENS:FILT:RIGH HP400

The following query returns the right filter type.

SENS:FILT:RIGH?

Sense Subsystem

SENSe:AVERaging:MOVing:POINts

Syntax

SENSe: AVERaging: MOVing: POINts < number of points > SENSe: AVERaging: MOVing: POINts?

Description

Controls the number of points to be included in the moving average. In moving averaging, when a new measurement data is added, the oldest data is discarded.

Parameter

ltem	Туре	Range of values	Default value
number of points	Numeric	1 to 50	1

Remark

This setting is only applicable in the analyzer mode but not Frequency domain and Time domain mode.

Examples

The following command sets eight averaging points.

SENS:AVER:MOV:POIN 8

The following query returns the number of averaging points.

SENS: AVER: MOV: POIN?

SENSe: AVERaging: SYNC: POINts

Syntax

SENSe: AVERaging: SYNC: POINts < number of points> SENSe: AVERaging: SYNC: POINts?

Description

Sets the number of points for the synchronous averaging. Synchronous averaging reduces noise levels by averaging the acquired data in the time domain. The query returns the number of averaging points.

Parameter

Item	Туре	Range of values	Default value
number of points	Numeric	1 to 64	1

Remark

This setting is only applicable if you trigger from the channel 1 or channel 2 input.

Examples

The following command sets eight averaging points.

SENS: AVER: SYNC: POIN 8

The following query returns the number of averaging points.

SENS: AVER: SYNC: POIN?

Sense Subsystem

SENSe:WAVeform:POINts

Syntax

SENSe: WAVeform: POINts < number of points>

SENSe: WAVeform: POINts?

Description

Sets the number of data points to acquire with the FETCh: ARRAy? command. The query returns the selected acquisition length.

If you select the frequency domain analysis, the acquisition length represents the FFT size. The acquisition length of the frequency domain analysis doubles the acquisition length that you select using this command.

Parameter

ltem	Туре	Range of values	Default value
number of points	Numeric	256, 512, 1024, 2048, 4096, 8192, 16384, or 32768	1024

Remarks

If the number of points that you enter is not the exact value of the acquisition length, the value is always clipped to its lower value. For instance, if the number of points that you enter is 500, it will be clipped to 256 which is the number lower than 500.

Examples

The following command sets the acquisition length to 512.

SENS:WAV:POIN 512

The following query returns the acquisition length.

SENS: WAV: POIN?

SENSe:FFT:WINDow

Syntax

SENSe:FFT:WINDow <type>

SENSe: FFT: WINDow?

Description

Sets the window function for frequency domain analysis. The query returns the window function.

The window functions with their corresponding <type> parameters are listed as follows.

HANN	Hann window
RECTangular	Rectangular window
BLACkman	Blackman-Harris window
RIFe1	Rife-Vincent 1 window
RIFe3	Rife-Vincent 3 window
HAMMing	Hamming window
FLATtop	Flattop window

Parameter

Item	Туре	Range of values	Default value
type	Discrete	RECTangular, HANN, BLACkman, RIFe1, RIFe3, HAMMing, or FLATtop	BLACkman

Examples

The following command sets the Rectangular window function.

SENS:FFT:WIND RECT

The following query returns the window function.

SENS:FFT:WIND?

Typical response: RECT

SENSe:FUNDamental:FREQuency:LOCK

Syntax

SENSe:FUNDamental:FREQuency:LOCK <type>,
 (@<channel list>)
SENSe:FUNDamental:FREQuency:LOCK?
 (@<channel list>)

Description

Sets the fundamental frequency lock type for SINAD, THD+N Ratio, or THD+N Level measurement. The query returns the fundamental frequency lock type.

AUTO	Automatically determines the
	fundamental frequency by selecting the
	signal with the highest magnitude from
	the incoming signal at analog analyzer
GLOCK	The fundamental frequency is
	determined by the frequency value set
	at the corresponding channel of the
	analog generator

Parameters

Item	Туре	Range of values	Default value
type	Discrete	AUTO or GLOCK	AUT0
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

• This setting is only applicable when the Function 2 measurement of the specified channel is set to SINAD, THD+N Ratio, or THD+N Level.

- If Function 2 measurement is set to SINAD, the default frequency lock type is GLOCK.
- If Function 2 measurement is set to THD+N Ratio and THD+N Level, the default frequency lock type is AUTO.
- Function 1 measurement is set to Frequency if the frequency lock type is AUTO.

Examples

The following command sets the fundamental frequency lock type to AUTO for channel 1.

```
SENS: FUND: FREQ: LOCK AUTO, (@1)
```

The following query returns the fundamental frequency lock type for channel 1.

```
SENS: FUND: FREQ: LOCK? (@1)
```

Typical response: AUTO

SENSe:THDN:NOTCh:BANDwidth

Syntax

```
SENSe:THDN:NOTCh:BANDwidth <method>,
  (@<channel list>)
```

SENSe: THDN: NOTCh: BANDwidth? (@<channel list>)

Description

Sets the determination method for the notch filter bandwidth used in the SINAD or THD+N measurement for the specified channel(s). The notch filter is specifically used to notch out the fundamental component of the input signal for the analog analyzer. The query returns the determination method for the notch filter bandwidth used in the SINAD or THD+N measurement of the selected channel(s).

Sense Subsystem

AUTO Automatically determines the notch

filter bandwidth

CUSTom The notch filter bandwidth is

user-defined

Parameters

Item	Туре	Range of values	Default value
method	Discrete	AUTO or CUSTom	AUT0
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

This setting is only applicable when the Function 2 measurement of the specified channel is set to SINAD or THD+N Level.

Examples

The following command sets the notch filter bandwidth method to AUTO for channel 1.

SENS: THDN: NOTC: BAND AUTO, (@1)

The following query returns the notch filter bandwidth method for channel 1.

SENS: THDN: NOTC: BAND? (@1)

Typical response: AUTO

SENSe:SNR:DELay

Syntax

SENSe:SNR:DELay <delay>, (@<channel list>)

SENSe:SNR:DELay? (@<channel list>)

Description

Sets the signal-to-noise ratio (SNR) measurement delay for the specified channel(s) in milliseconds. The query returns the SNR measurement delay of the selected channel(s).

Parameter

Item	Туре	Range of values	Default value
delay	Numeric	0 to 2000	0
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Examples

The following command sets the SNR measurement delay to 200 ms for channel 1.

SENS:SNR:DEL 200, (@1)

The following query returns the SNR delay for channel 1.

SENS:SNR:DEL? (@1)

SENSe:SOURce:INTerface

Syntax

SENSe:SOURce:INTerface <interface>,

(@channel list)

SENSe: SOURce: INTerface? (@channel list)

Description

Sets the source interface of the noise level and SNR measurements for the specified channel(s) of the analog anlyzer. The signal source used for the noise level or SNR measurement can come from the digital or analog generator. You can choose between the analog or digital generator as the signal source interface. The query returns the source interface of the noise level and SNR measurements for the selected channel(s) of the analog analyzer.

Parameter

Item	Туре	Range of values	Default value
interface	Discrete	ANALog or DIGital	ANALog
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

This setting is only applicable when the Function 2 measurement of the specified analog analyzer channel is set to Noise level or SNR.

Examples

The following command sets the source interface of the noise level and SNR measurements to DIGital for analog analyzer channel 1.

SENS: SOUR: INT DIG, (@1)

The following query returns the source interface of the noise level and SNR measurements for analog analyzer channel 1.

SENS: SOUR: INT? (@1)

Typical response: DIG

SENSe:SOURce:CHANnel

Syntax

SENSe:SOURce:CHANnel <source channel>,
(@channel list)
SENSe:SOURce:CHANnel? (@channel list)

Description

Sets the source channel of the noise level and SNR measurements for the specified channel(s) of the analog analyzer. Source channel is the generator output channel used for the closed-loop noise level and SNR measurements. The query returns the source channel of the noise level and SNR measurements for the selected channel(s) of the analog analyzer.

Parameter

Item	Туре	Range of values	Default value
source channel	Discrete	1 or 2	1
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Sense Subsystem

Remark

This setting is only applicable when the Function 2 measurement of the specified analog analyzer channel is set to Noise level or SNR.

Examples

The following command sets the source channel of the noise level and SNR measurements to channel 2 for analog analyzer channel 1.

```
SENS: SOUR: CHAN 2, (@1)
```

The following query returns the source channel of the noise level and SNR measurements for analog analyzer channel 1.

```
SENS:SOUR:CHAN? (@1)
```

Typical response: 2

SENSe:DIGital:FUNDamental:FREQuency:LOCK[:SINad]

Syntax

```
SENSe:DIGital:FUNDamental:FREQuency:LOCK[:SINad]
<type>, (@<channel list>)
SENSe:DIGital:FUNDamental:FREQuency:LOCK[:SINad]
? (@<channel list>)
```

Description

Sets the fundamental frequency lock type for SINAD, THD+N Ratio, or THD+N Level for digital analyzer measurement. The query returns the fundamental frequency lock type.

AUTO	Automatically determines the
	fundamental frequency by selecting the
	signal with the highest magnitude from
	the incoming signal at digital analyzer
GLOCk	The fundamental frequency is
	determined by the frequency value set
	at the corresponding channel of the
	digital generator
CUSTom	The fundamental frequency value is
	user-defined

Parameters

Item	Туре	Range of values	Default value
type	Discrete	AUTO, GLOCk, or CUSTom	AUT0
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable when the Function 2 measurement of the specified channel is set to SINAD, THD+N Ratio, or THD+N Level.
- If Function 2 measurement is set to SINAD, the default frequency lock type is GLOCk.
- If Function 2 measurement is set to THD+N Ratio and THD+N Level, the default frequency lock type is AUTO.
- Function 1 measurement is set to Frequency if the frequency lock type is AUTO.
- When the frequency lock type is set to CUSTom, use "SENSe:DIGital:FUNDamental:FREQuency" to set the custom fundamental frequency value.

Sense Subsystem

Examples

The following command sets the fundamental frequency lock type to AUTO for channel 1.

```
SENS:DIG:FUND:FREQ:LOCK AUTO, (@D1)
```

The following query returns the fundamental frequency lock type for channel 1.

```
SENS:DIG:FUND:FREQ:LOCK? (@D1)
```

Typical response: AUTO

SENSe:DIGital:FUNDamental:FREQuency:LOCK:THD

Syntax

```
SENSe:DIGital:FUNDamental:FREQuency:LOCK:THD
<type>, (@<channel list>)
SENSe:DIGital:FUNDamental:FREQuency:LOCK:THD?
(@<channel list>)
```

Description

Sets the fundamental frequency lock type for THD Ratio or THD Level digital analyzer measurement. The query returns the fundamental frequency lock type.

GLOCk The fundamental frequency is

determined by the frequency value set at the corresponding channel of the

digital generator

CUSTom The fundamental frequency value is

user-defined

Parameters

Item	Туре	Range of values	Default value
type	Discrete	GLOCk or CUSTom	CLOCk
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable when the Function 2 measurement of the specified channel is set to THD Ratio or THD Level.
- When the frequency lock type is set to CUSTom, use "SENSe:DIGital:FUNDamental:FREQuency" to set the custom fundamental frequency value.

Examples

The following command sets the fundamental frequency lock type to CUSTom for channel 1 and 2.

```
SENS:DIG:FUND:FREQ:LOCK:THD CUST, (@D1,D2)
```

The following query returns the fundamental frequency lock type for channel 1.

```
SENS:DIG:FUND:FREQ:LOCK:THD? (@D1)
```

Typical response: CUST

SENSe:DIGital:FUNDamental:FREQuency

Syntax

SENSe:DIGital:FUNDamental:FREQuency <fundamental
frequency>[<unit>], (@<channel list>)
SENSe:DIGital:FUNDamental:FREQuency?
(@<channel list>)

Description

Sets the custom fundamental frequency value for SINAD, THD+N Ratio, THD+N Level, THD Ratio, or THD Level digital analyzer measurement. The query returns the fundamental frequency value.

Parameters

Item	Туре	Range of values	Default value
fundamental frequency	Numeric	(10 - 0.45 fs) Hz, where fs is the input sampling frequency	1000 Hz
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This setting is only applicable when the Function 2 measurement of the specified channel is set to SINAD, THD+N Ratio, THD+N Level, THD Ratio, or THD Level.
- This setting is only valid when the fundamental frequency lock type is set to CUSTom.

Examples

The following command sets the fundamental frequency value to 2 kHz for digital analyzer channel 1.

SENS:DIG:FUND:FREQ 2kHz, (@D1)

The following query returns the fundamental frequency value for digital analyzer channel 1.

SENS:DIG:FUND:FREQ? (@D1)

Typical response: 2.000000E+03

SENSe:DIGital:THD:HARMonic:COUNt

Syntax

```
SENSe:DIGital:THD:HARMonic:COUNt <count>,
  (@<channel list>)
SENSe:DIGital:THD:HARMonic:COUNt? (@<channel list>)
```

Description

Sets the number of harmonics for the THD Ratio and THD Level digital analyzer measurement. The query returns the number of harmonics in integer.

Parameters

Item	Туре	Range of values	Default value
count	Numeric	2 to 20	5
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remark

This setting is only applicable when the Function 2 measurement of the specified channel is set to THD Ratio or THD Level.

Sense Subsystem

Examples

The following command sets the number of harmonics to 12 for channel 1 and 2.

```
SENS:DIG:THD:HARM:COUN 12, (@D1,D2)
```

The following query returns the number of harmonics for channel 1.

```
SENS:DIG:THD:HARM:COUN? (@D1)
Typical response: 12
```

SENSe:DIGital:COUPling

Syntax

```
SENSe:DIGital:COUPling <coupling>,
  (@<channel list>)
SENSe:DIGital:COUPling? (@<channel list>)
```

Description

Sets the coupling mode of the embedded digital analyzer audio signal for the selected channel(s). The query returns the coupling mode for the selected channel(s). Multiple responses are separated by commas.

AC	AC coupling blocks the DC component of the audio signal
DC	DC coupling allows both AC and DC input signals to pass through to the digital analyzer and to be measured down to 0 Hz. This setting should be selected when making DC voltage measurements.

Parameters

Item	Туре	Range of values	Default value
coupling	Discrete	AC or DC	AC
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Examples

The following command sets the coupling mode for channel 1 to AC.

SENS:DIG:COUP AC, (@D1)

The following query returns the coupling mode for channel 1.

SENS:DIG:COUP? (@D1)

Typical response: AC

SENSe:DIGital:SAMPle:SIZE

Syntax

SENSe:DIGital:SAMPle:SIZE <sample size>

SENSe:DIGital:SAMPle:SIZE?

Description

Sets the acquisition data size of the digital analyzer audio signal to be analyzed. The query returns the sample size.

Sense Subsystem

Parameter

Item	Туре	Range of values	Default value
sample size	Numeric	2048, 4096, 8192, 16384, 32768, 65536, or 131072	4096

Examples

The following command sets the sample size to 4096.

SENS:DIG:SAMP:SIZE 4096

The following query returns the sample size.

SENS:DIG:SAMP:SIZE?
Typical response: 4096

SENSe:DIGital:VOLTage:DETector

Syntax

SENSe:DIGital:VOLTage:DETector <detector type>,
 (@<channel list>)
SENSe:DIGital:VOLTage:DETector?
 (@<channel list>)

Description

Sets the digital analyzer AC level detector for the specified channel(s). The query returns the detector type of the selected channel(s). Multiple responses are separated by commas.

RMS	RMS detector
VPP	1/2 Peak-to-peak detector

Parameters

Item	Туре	Range of values	Default value
detector type	Discrete	RMS or VPP	RMS
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

This command is only applicable if the selected measurement function is Vac.

Examples

The following commands set the detector types to RMS and Vpp for channel 1 and 2 respectively.

```
SENS:DIG:VOLT:DET RMS, (@D1)
SENS:DIG:VOLT:DET VPP, (@D2)
```

The following query returns the detector types for channel 1 and 2.

```
SENS:DIG:VOLT:DET? (@D1,D2)
```

Typical response: RMS, VPP

SENSe:DIGital:FILTer:LPASs

Syntax

SENSe:DIGital:FILTer:LPASs <low pass filter>,
 (@<channel list>)
SENSe:DIGital:FILTer:LPASs? (@<channel list>)

Description

Sets the low pass filter for the specified channel(s). The query returns the low pass filter type of the selected channel(s). Multiple responses are separated by commas.

The low pass filter types with their corresponding <low pass filter> parameters are listed as follows.

NONE	No low pass filter is applied
LP15	Low pass filter with 15 kHz cutoff frequency
LP20	Low pass filter with 20 kHz cutoff frequency
LP22	Low pass filter with 22 kHz cutoff frequency
LP30	Low pass filter with 30 kHz cutoff frequency
CUSTom	User-defined low pass filter

Parameters

Item	Туре	Range of values	Default value
low pass filter	Discrete	NONE, LP15, LP20, LP22, LP30, or CUSTom	NONE
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- To use a custom low pass filter, you need to load the custom filter data into the U8903A before you can use it. To load a custom filter data, use either the DATA:DIGital:FILTer or MMEM:LOAD DFILter, <filename> command.
- The command DATA:DIGital:FILTer or MMEM:LOAD DFILter, <filename> must be sent prior to sending the SENSe:DIGital:FILTer:LPASs command.
- If you switch from CUSTom to either NONE, LP15, LP20, LP22, or LP30, your previously downloaded information for the custom filter will be lost. You will need to redownload the filter information into the system. Refer to "Using the user-defined filter data" on page 493 for the information on how to use the custom filter.

Examples

The following commands set the low pass filter types to LP15 and LP30 for channel 1 and 2 respectively.

```
SENS:DIG:FILT:LPAS LP15, (@D1)
SENS:DIG:FILT:LPAS LP30, (@D2)
```

The following query returns the low pass filter types for channel 1 and 2.

```
SENS:DIG:FILT:LPAS? (@D1,D2)
```

Typical response: LP15, LP30

Sense Subsystem

SENSe:DIGital:FILTer:HPASs

Syntax

SENSe:DIGital:FILTer:HPASs <high pass filter>,
(@<channel list>)
SENSe:DIGital:FILTer:HPASs? (@<channel list>)

Shipe. Brotear. Francisco. (e tenamier francisco.

Description

Sets the high pass filter for the specified channel(s). The query returns the high pass filter type of the selected channel(s). Multiple responses are separated by commas.

The high pass filter types with their corresponding <high pass filter> parameters are listed as follows.

NONE	No high pass filter is applied
HP20	High pass filter with 20 Hz cutoff frequency
HP100	High pass filter with 100 Hz cutoff frequency
HP400	High pass filter with 400 Hz cutoff frequency
CUSTom	User-defined high pass filter

Parameters

Item	Туре	Range of values	Default value
high pass filter	Discrete	NONE, HP20, HP100, HP400, or CUSTom	NONE
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- To use a custom high pass filter, you need to load the custom filter data into the U8903A before you can use it. To load a custom filter data, use either the DATA:DIGital:FILTer or MMEM:LOAD DFILter, <filename> command.
- The command DATA: DIGital:FILTer or MMEM: LOAD DFILter, <filename> must be sent prior to sending the SENSe:DIGital:FILTer:HPASs command.
- If you switch from CUSTom to either NONE, HP20, HP100, or HP400, your previously downloaded information for the custom filter will be lost. You will need to redownload the filter information into the system. Refer to "Using the user-defined filter data" on page 493 for the information on how to use the custom filter.

Examples

The following commands set the high pass filter types to HP20 and HP100 for channel 1 and 2 respectively.

```
SENS:DIG:FILT:HPAS HP20, (@D1)
SENS:DIG:FILT:HPAS HP100, (@D2)
```

The following query returns the high pass filter types for channel 1 and 2.

```
SENS:DIG:FILT:HPAS? (@D1,D2)
```

Typical response: HP20, HP100

SENSe:DIGital:FILTer:WEIGhting

Syntax

SENSe:DIGital:FILTer:WEIGhting <weighting
filter>, (@<channel list>)
SENSe:DIGital:FILTer:WEIGhting?
(@<channel list>)

Description

Sets the weighting filter for the specified channel(s). The query returns the weighting filter type of the selected channel(s). Multiple responses are separated by commas.

The weighting filter types with their corresponding <weighting filter> parameters are listed as follows.

NONE No weighting filter is applied

AWEighting A-Weighting filter

CCIR1k CCIR-1k weighted

CCIR2k CCIR-2k weighted

CMESsage C-Message

CCITt CCITT

CUSTom User-defined arbitrary filter type including Bandpass, Bandstop and notch filters

Parameters

Item	Туре	Range of values	Default value
weighting filter	Discrete	NONE, AWEighting, CCIR1k, CCIR2k, CMESsage, CCITt, or CUSTom	NONE
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- The custom filter type includes the bandpass, bandstop, notch, and arbitrary filters.
- To use a custom weighting filter, you need to load the custom filter data into the U8903A before you can use it. To load a custom filter data, use either the DATA:DIGital:FILTer or MMEM:LOAD DFILter, <filename> command.
- The command DATA:DIGital:FILTer or MMEM:LOAD DFILter, <filename> must be sent prior to sending the SENSe:DIGital:FILTer:WEIGhting command.
- If you switch from CUSTom to either NONE, AWE, CCIR1k, CCIR2k, CMES, or CCIT, your previously downloaded information for the custom filter will be lost. You will need to redownload the filter information into the system. Refer to "Using the user-defined filter data" on page 493 for the information on how to use the custom filter.

Examples

The following commands set the weighting filter types to A-Weighting and C-Message for channel 1 and 2 respectively.

```
SENS:DIG:FILT:WEIG AWE, (@D1)
SENS:DIG:FILT:WEIG CMES, (@D2)
```

The following query returns the weighting filter types for channel 1 and 2.

```
SENS:DIG:FILT:WEIG? (@D1,D2)
```

Typical response: AWE, CMES

SENSe:DIGital:FILTer:DEEMphasis

Syntax

SENSe:DIGital:FILTer:DEEMphasis <de-emphasis>,
 (@<channel list>)
SENSe:DIGital:FILTer:DEEMphasis?
 (@<channel list>)

Description

Sets the de-emphasis condition for the specified channel(s). The query returns the de-emphasis condition of the selected channel(s). Multiple responses are separated by commas.

The de-emphasis conditions with their corresponding <de-emphasis> parameters are listed as follows.

None	No de-emphasis
50us	50µs de-emphasis
75us	75µs de-emphasis

Custom User-defined de-emphasis filter

Parameters

Item	Туре	Range of values	Default value
de-emphasis	String	None, 50us, 75us, or Custom	None
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

 To use a custom deemphasis filter, you need to load the custom filter data into the U8903A before you can use it.
 To load a custom filter data, use either the DATA:DIGital:FILTer or MMEM:LOAD DFILter,
 <filename> command.

- The command DATA:DIGital:FILTer or MMEM:LOAD DFILter, <filename> must be sent prior to sending the SENSe:DIGital:FILTer:DEEMphasis command.
- If you switch from CUSTom to either None, 50us, or 75us, your previously downloaded information for the custom filter will be lost. You will need to redownload the filter information into the system. Refer to "Using the user-defined filter data" on page 493 for the information on how to use the custom filter.

Examples

The following commands set the de-emphasis condition to 50us for channel 1.

```
SENS:DIG:FILT:DEEM "50us", (@D1)
```

The following query returns the de-emphasis condition for channel 1.

```
SENS:DIG:FILT:DEEM? (@D1)
```

Typical response: 50us

SENSe:DIGital:FILTer:SRATe

Syntax

```
SENSe:DIGital:FILTer:SRATe <sampling rate>,
  (@<channel list>)
SENSe:DIGital:FILTer:SRATe? (@<channel list>)
```

Description

Sets the filter sampling rate for the specified channel(s). The query returns the filter sampling rate of the selected channel(s). Multiple responses are separated by commas.

Sense Subsystem

The <sampling rate> parameters are listed as follows.

S32000	32 kHz
S44100	44.1 kHz
S48000	48 kHz
S88200	$88.2~\mathrm{kHz}$
S96000	96 kHz
S17640	$176.4~\mathrm{kHz}$
S19200	$192~\mathrm{kHz}$

Parameters

Item	Туре	Range of values	Default value
sampling rate	Discrete	S32000, S44100, S48000, S88200, S96000, S17640, or S19200	\$48000
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Examples

The following command sets the sampling rate for channel 1.

SENS:DIG:FILT:SRAT S32000, (@D1)

The following query returns the sampling rate for channel 1.

SENS:DIG:FILT:SRAT? (@D1)

SENSe:DIGital:FUNCtion<j>

Syntax

SENSe:DIGital:FUNCtion<j> <function>,
 (@<channel list>)
SENSe:DIGital:FUNCtion<j>? (@<channel list>)

Description

Sets the digital analyzer measurement function for the specified channel(s). The query returns the measurement function of the selected channel(s). Multiple responses are separated by commas.

The measurement functions with their corresponding <function> parameters are listed as follows.

FREQuency	Frequency measurement
VAC	AC voltage measurement
VDC	DC voltage measurement
THDRatio	THD+N Ratio measurement
THDLevel	THD+N Level measurement
SINad	SINAD measurement
SNRatio	Signal-to-noise ratio measurement
NOISe	Noise Level measurement
IMD	SMPTE IMD measurement
SDFDiec118	DFD IEC 60118 2nd order measurement
TDFDiec118	DFD IEC 60118 3rd order measurement
SDFDiec268	DFD IEC 60268 2nd order measurement
TDFDiec268	DFD IEC 60268 3rd order measurement
DCRosstalk	Crosstalk (channel driven) measurement
PHASe	Phase measurement
GDELay	Group delay measurement
PPEak	Maximum peak measurement
NPEak	Minimum peak measurement
DRATio	THD Ratio measurement
DLEVel	THD Level measurement

Parameters

Item	Туре	Range of values	Default value
j	Numeric	1 to 2 • SENS:DIG:FUNC1 indicates the first measurement function • SENS:DIG:FUNC2 indicates the second measurement function	1
function	Discrete	FREQuency, VAC, VDC, THDRatio, THDLevel, SINad, SNRatio, NOISe, IMD, SDFDiec118, TDFDiec118, SDFDiec268, TDFDiec268, PHASe, DCRosstalk, GDELay, PPEak, NPEak, DRATio, or DLEVel	 FREQuency (first measurement function) VAC (second measurement function)
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- For the first measurement function, there are only three types of selectable functions comprising frequency, Vac, and Vdc. For the second measurement function, you can select any of the measurement functions listed above.
- You need to set the DC coupling (SENSe:DIGital:COUPling command) prior to setting the Vdc measurement function.
- If either phase or crosstalk is selected, you must also specify the reference channel using the SENSe:DIGital:REFerence:CHANnel command. You must set the reference channel prior to sending the SENSe:DIGital:FUNCtion command.

- If phase is selected for a particular channel, the measurement function for all channels will automatically change to phase.
- Noise Level is not applicable for the sweep measurement parameter selection.

Examples

The following commands set Frequency as the first measurement function and SINAD as the second measurement function for channel 1. Make measurement and fetch the SINAD measurement result.

```
SENS:DIG:FUNC1 FREQ, (@D1)
SENS:DIG:FUNC2 SIN, (@D1)
INIT:DIG:ANAL (@D1)
FETC:DIG:SCAL? FUNC2, (@D1)
```

NOTE

- When FETCh is queried, the measurement result will be returned in the unit as listed in "Appendix B: Units of the Measurement Function Returned Values" on page 571.
- For crosstalk measurements, a value of 0 dB or 100% will always be returned when FETCh is used to acquire the result of the reference channel.

The following query returns the measurement function of channel 1.

```
SENS:DIG:FUNC2? (@D1)
Typical response: SINAD
```

SENSe:DIGital:FUNCtion<j>:UNIT

Syntax

```
SENSe:DIGital:FUNCtion<j>:UNIT <unit>,
  (@<channel list>)
SENSe:DIGital:FUNCtion<j>:UNIT?
  (@<channel list>)
```

Description

Specifies the unit for the measurement result (which is obtained using the FETCh:DIGital command) of the corresponding function for the selected channel(s). The query returns the unit of the corresponding function for the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
j	Numeric	1 to 2 • SENS:DIG:FUNC1 indicates the first measurement function • SENS:DIG:FUNC2 indicates the second measurement function	1
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

For the <unit> range of values and formulas, refer to "Appendix B: Units of the Measurement Function Returned Values" on page 571.

Remarks

The unit specified using this command will cause the measurement result to be returned in that unit. For example, changing the unit to dBV for the Vac function will return the measurement result obtained by the FETCh:DIGital command in dBV.

Examples

The following commands set the AC voltage as the second measurement function in the unit dBV for both channels.

```
SENS:DIG:FUNC2 VAC, (@D1,D2)
SENS:DIG:FUNC2:UNIT dBV, (@D1,D2)
```

The following query returns the unit of the second measurement function for both channels.

```
SENS:DIG:FUNC2:UNIT? (@D1,D2)
```

Typical response: dbV, dbV

SENSe:DIGital:REFerence:LEVel

Syntax

```
SENSe:DIGital:REFerence:LEVel <level>,
  (@<channel list>)
SENSe:DIGital:REFerence:LEVel? (@<channel list>)
```

Description

Sets the reference level for the specified channel(s) in FFS. The reference level is used for conversion of the measurement result in unit dBr or x. The query returns the reference level of the selected channel(s). Multiple responses are separated by commas.

Sense Subsystem

Parameters

Item	Туре	Range of values	Default value
level	Numeric	0 < level < 1 FFS	100 mFFS
channel list	Discreet	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Examples

The following commands set the reference levels to 200 mFFS and 500 mFFS for channel 1 and 2 respectively.

SENS:DIG:REF:LEV 0.2, (@D1)

SENS:DIG:REF:LEV 0.5, (@D2)

The following query returns the reference levels for channel $1\ \mathrm{and}\ 2.$

SENS:DIG:REF:LEV? (@D1,D2)

Typical response: 2.000000E-01,5.000000E-01

SENSe:DIGital:REFerence:FREQuency

Syntax

```
SENSe:DIGital:REFerence:FREQuency <frequency>,
  (@<channel list>)
SENSe:DIGital:REFerence:FREQuency?
  (@<channel list>)
```

Description

Sets the reference frequency for the specified channel(s) in Hz (Hertz). The reference frequency is used for conversion of the measurement result in unit Δ Hz (delta Hertz). The query returns the reference frequency of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
frequency	Numeric	0 ≤ frequency ≤ 1.0E+9	0
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remark

The reference frequency setting is only applicable for the frequency measurement function to specify the measurement results in ΔHz .

Examples

The following commands set the reference frequencies to 100 Hz and 300 Hz for channel 1 and 2 respectively.

```
SENS:DIG:REF:FREQ 100, (@D1)
SENS:DIG:REF:FREQ 300, (@D2)
```

Sense Subsystem

The following query returns the reference frequency for channel 1 and 2.

SENS:DIG:REF:FREQ? (@D1,D2)

Typical response: 1.000000E+02,3.000000E+02

SENSe:DIGital:REFerence:RATio

Syntax

```
SENSe:DIGital:REFerence:RATio <ratio>,
  (@<channel list>)
SENSe:DIGital:REFerence:RATio? (@<channel list>)
```

Description

Sets the reference ratio for the specified channel(s) in dB. The reference ratio is used for conversion of the measurement result in unit ΔdB (delta decibel). The query returns the reference ratio of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
ratio	Numeric	-180 < ratio < 180	0
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Examples

The following commands set the reference ratio to 10 dB and 30 dB for channel 1 and 2 respectively.

```
SENS:DIG:REF:RAT 10, (@D1)
SENS:DIG:REF:RAT 30, (@D2)
```

The following query returns the reference ratio for channel 1 and 2.

SENS:DIG:REF:RAT? (@D1,D2)

Typical response: 1.000000E+01,3.000000E+01

SENSe:DIGital:REFerence:VOLTage

Syntax

```
SENSe:DIGital:REFerence:VOLTage <reference
voltage>, (@<channel list>)
SENSe:DIGital:REFerence:VOLTage?
(@<channel list>)
```

Description

Sets the full scale (FFS) voltage for the specified channel(s) in V. The query returns the FFS voltage of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
reference voltage	Numeric	0 < voltage ≤ 1.0E+9	1
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Examples

The following command sets the FFS voltage to 2.5 V for channel 1.

SENS:DIG:REF:VOLT 10, (@D1)

Sense Subsystem

The following query returns the FFS voltage for channel 1.

SENS:DIG:REF:VOLT? (@D1)

Typical response: 2.500000E+01

SENSe:DIGital:REFerence:CHANnel

Syntax

SENSe:DIGital:REFerence:CHANnel <reference

channel>

SENSe:DIGital:REFerence:CHANnel?

Description

Sets the reference channel for the phase or crosstalk measurement functions. The query returns the reference channel.

Parameter

Item	Туре	Range of values	Default value
reference channel	Numeric	1 or 2	1

Examples

The following commands measures phase with channel 2 as the reference channel.

SENS:DIG:REF:CHAN 2

SENS:DIG:FUNC2 PHAS, (@D1,D2)

INIT:DIG:ANAL (@D1)

FETC:DIG:SCAL? FUNC2, (@D1)

The following query returns the reference channel.

SENS:DIG:REF:CHAN?

Typical response: 2

SENSe:DIGital:REFerence:MEASured

Syntax

SENSe:DIGital:REFerence:MEASured <measurement type>, <source channel>, <@target channel list>

Description

Sets the last measurement result obtained from the specified measurement type of the selected source as the reference value for the corresponding target channels.

Parameters

Item	Туре	Range of values	Default value
measurement type	Discrete	LEVel, FREQuency, or RATio	LEVel
source channel	Discrete	CH1 or CH2	Required parameter
target channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- If there is no data in the last measurement or invalid data such as INF, this command will not have any effect; the previous reference value will be remain.
- If the measurement type selection is level, sending this command will affect the reference level which is set using SENSEe:DIGital:REFerence:LEVel. You can use the command SENSe:DIGital:REFerence:LEVel? to query for the reference level.

Sense Subsystem

- If the measurement type selection is frequency, sending this command will affect the reference frequency, which is set using SENSEe:DIGital:REFerence:FREQuency. You can use the command

 SENSe:DIGital:REFerence:FREQuency? to query for
 - SENSe:DIGital:REFerence:FREQuency? to query for the reference frequency.
- If the measurement type selection is ratio, sending this command will affect the reference ratio which is set using SENSEe:DIGital:REFerence:RATio. You can use the command SENSe:DIGital:REFerence:RATio? to query for the reference ratio.

Examples

The following command sets the measured Vac result of channel 1 as reference value for both channels.

```
SENS:DIG:REF:MEAS LEV, CH1, (@D1:D2)
```

The following query returns the reference level of the measured value. Assume that the measured Vac result for channel 1 is 1 FFS.

```
SENS:DIG:REF:LEV? (@D1:D2)

Typical response: 1.000000E+00
```

SENSe:DIGital:AVERaging:MOVing:POINts

Syntax

```
SENSe:DIGital:AVERaging:MOVing:POINts
<number of points>
SENSe:DIGital:AVERaging:MOVing:POINts?
```

Description

Controls the number of points to be included in the moving average. In moving averaging, when a new measurement data is added, the oldest data is discarded.

Parameter

Item	Туре	Range of values	Default value
number of points	Numeric	1 to 50	1

Remark

This setting is only applicable in the analyzer mode but not Frequency domain and Time domain mode.

Examples

The following command sets eight averaging points.

SENS:DIG:AVER:MOV:POIN 8

The following query returns the number of averaging points.

SENS: DIG: AVER: MOV: POIN?

Typical response: 8

SENSe:DIGital:AVERaging:SYNC:POINts

Syntax

SENSe:DIGital:AVERaging:SYNC:POINts

<number of points>

SENSe:DIGital:AVERaging:SYNC:POINts?

Description

Sets the number of points for the synchronous averaging. Synchronous averaging reduces noise levels by averaging the acquired data in the time domain. The query returns the number of averaging points.

Sense Subsystem

Parameter

Item	Туре	Range of values	Default value
number of points	Numeric	1 to 64	1

Remark

This setting is only applicable if you trigger from the channel 1 or channel 2 input.

Examples

The following command sets eight averaging points.

SENS:DIG:AVER:SYNC:POIN 8

The following query returns the number of averaging points.

SENS:DIG:AVER:SYNC:POIN?

Typical response: 8

SENSe:DIGital:SNR:DELay

Syntax

SENSe:DIGital:SNR:DELay <delay>,

(@<channel list>)

SENSe:DIGital:SNR:DELay? (@<channel list>)

Description

Sets the signal-to-noise ratio (SNR) measurement delay for the specified channel(s) in milliseconds. The query returns the SNR measurement delay of the selected channel(s).

Parameter

Item	Туре	Range of values	Default value
delay	Numeric	0 to 2000	0
channel list	Numeric	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Examples

The following command sets the SNR measurement delay to 200 ms for channel 1.

SENS:SNR:DEL 200, (@D1)

The following query returns the SNR delay for channel 1.

SENS:SNR:DEL? (@D1)

Typical response: 200

SENSe:DIGital:SOURce:INTerface

Syntax

SENSe:DIGital:SOURce:INTerface <interface>,
 (@channel list)

SENSe:DIGital:SOURce:INTerface? (@channel list)

Description

Sets the source interface of the noise level and SNR measurements for the specified channel(s) of the digital analyzer. The signal source used for the Noise Level or SNR measurements can come from the digital generator or analog generator. You can choose between analog or digital generator as the signal source interface. The query returns the source interface for the noise level and SNR measurements for the selected channel(s) of the digital analyzer.

Parameter

Item	Туре	Range of values	Default value
interface	Discrete	ANALog or DIGital	DIGital
channel list	Numeric	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remark

This setting is only applicable when the Function 2 measurement of the specified digital analyzer channel is set to Noise level or SNR.

Examples

The following command sets the source interface of the noise level and SNR measurements to ANALog for digital analyzer channel 1.

```
SENS:DIG:SOUR:INT ANAL, (@D1)
```

The following query returns the source interface of the noise level and SNR measurements for digital analyzer channel 1.

```
SENS:DIG:SOUR:INT? (@D1)
```

Typical response: ANAL

SENSe:DIGital:SOURce:CHANnel

Syntax

```
SENSe:DIGital:SOURce:CHANnel <source channel>,
  (@channel list)
SENSe:DIGital:SOURce:CHANnel? (@channel list)
```

Description

Sets the source channel of the noise level and SNR measurements for the specified channel(s) of the digital analyzer. Source channel is the generator output channel used for the closed-loop noise level and SNR measurements. The query returns the source channel of the noise level and SNR measurements for the selected channel(s) of the digital analyzer.

Sense Subsystem

Parameter

Item	Туре	Range of values	Default value
source channel	Discrete	1 or 2	1
channel list	Numeric	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remark

This setting is only applicable when the Function 2 measurement of the specified digital analyzer channel is set to Noise level or SNR.

Examples

The following command sets the source channel of the noise level and SNR measurements to channel 2 for digital analyzer channel 1.

SENS:DIG:SOUR:CHAN 2, (@D1)

The following query returns the source channel of the noise level and SNR measurements for digital analyzer channel 1.

SENS:DIG:SOUR:CHAN? (@D1)

Typical response: 2

SENSe:DIGital:THDN:MODE

Syntax

```
SENSe:DIGital:THDN:MODE <mode>,
(<@<channel list>)
SENSe:DIGital:THDN:MODE? (<@<channel list>)
```

Description

Sets the THD+N measurement mode for digital analyzer. The query returns the THD+N measurement mode.

Parameters

Item	Туре	Range of values	Default value
mode	Discrete	NORMal or PRECision	NORMal
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remark

The THD+N mode setting is only applicable when the digital analyzer function 2 is set to THD+N measurement.

Examples

The following command set the THD+N measurement mode to Precision for channel 1.

```
SENS:DIG:THDN:MODE PREC, (@D1)
```

The following query returns the THD+N measurement mode for channel 1.

```
SENS:DIG:THDN:MODE? (@D1)
```

Typical response: PREC

Sense Subsystem

SENSe:DIGital:FFT:WINDow

Syntax

SENSe:DIGital:FFT:WINDow <type>

SENSe:DIGital:FFT:WINDow?

Description

Sets the window function for frequency domain analysis. The query returns the window function.

The window functions with their corresponding <type> parameters are listed as follows.

HANNing	Hanning window
RECTangular	Rectangular window
BLACkman	Blackman-Harris window
RIFe1	Rife-Vincent 1 window
RIFe3	Rife-Vincent 3 window
HAMMing	Hamming window
FLATtop	Flattop window

Parameter

Item	Туре	Range of values	Default value
type	Discrete	RECTangular, HANN, BLACkman, RIFe1, RIFe3, HAMMing, or FLATtop	BLACkman

Examples

The following command sets the Hanning window function.

SENS:DIG:FFT:WIND HANN

The following query returns the window function.

SENS:DIG:FFT:WIND?

Typical response: HANN

SENSe:DIGital:WAVeform:POINts

Syntax

SENSe:DIGital:WAVeform:POINts <number of points>
SENSe:DIGital:WAVeform:POINts?

Description

Sets the number of data points to acquire with the FETCh: ARRAy? command. The query returns the selected acquisition length.

If you select the frequency domain analysis, the acquisition length represents the FFT size. The acquisition length of the frequency domain analysis doubles the acquisition length that you select using this command.

Parameter

Item	Туре	Range of values	Default value
number of points	Numeric	256, 512, 1024, 2048, 4096, 8192, 16384, or 32768	1024

Remarks

If the number of points that you enter is not the exact value of the acquisition length, the value is always clipped to its lower value. For instance, if the number of points that you enter is 500, it will be clipped to 256 which is the number lower than 500.

Examples

The following command sets the acquisition length to 512.

SENS:DIG:WAV:POIN 512

The following query returns the acquisition length.

SENS:DIG:WAV:POIN?

Typical response: 512

Sense Subsystem

SENSe:DIGital:BERT:INTerval

Syntax

SENSe:DIGital:BERT:INTerval <reading interval>
SENSe:DIGital:BERT:INTerval?

Description

Sets the reading interval of the pattern for the Bit Error Rate Test (BERT) in seconds. The reading interval is used to determine the front panel measurement refresh rate. The query returns the reading interval in seconds.

Parameter

Item	Туре	Range of values	Default value
reading interval	Numeric	0.1 to 3600	0.1

Remark

- The SOURce:DIGital:BERT[:MODE] command must be sent prior to sending this command.
- The reading interval must be less than the reading duration set at SOURce:DIGital:BERT:DURation.

Examples

The following command sets the reading interval to 1 second.

SENS:DIG:BERT:INT 1

The following query returns the reading interval.

SENS:DIG:BERT:INT?

Typical response: 1

SENSe:DIGital:BERT:UNIT

Syntax

SENSe:DIGital:BERT:UNIT <unit>

SENSe:DIGital:BERT:UNIT?

Description

Sets the unit of the Total Error and Total Bits for the Bit Error Rate Test (BERT). The query returns the unit of the Total Error and Total Bits.

HEX Hexadecimal

DEC Decimal

Parameter

Item	Туре	Range of values	Default value
unit	Discrete	HEX or DEC	DEC

Remark

The SOURce:DIGital:BERT[:MODE] command must be sent prior to sending this command.

Examples

The following command sets the unit of the Total Error and Total Bits to HEX

SENS:DIG:BERT:UNIT HEX

The following query returns the unit of the Total Error and Total Bits.

SENS:DIG:BERT:UNIT?

Typical response: HEX

SENSe:NOTCh:EMULation[:STATe]

Syntax

```
SENSe:NOTCh:EMULation[:STATe] <state>,
  (@<channel list>)
SENSe:NOTCh:EMULation[:STATe]? (@<channel list>)
```

Description

Enables or disables the notch emulation for the analog analyzer for the specified channel(s). The query returns the notch emulator state of the selected channel(s) as 0 if the notch emulator state is OFF, or 1 if the notch emulator state is ON. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
state	Boolean	OFF(0) or ON(1)	OFF
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remark

This command is only applicable if the selected analog analyzer measurement function is SINAD or THD+N Ratio.

Examples

The following command enables the notch emulation for analog analyzer channel 1 and 2.

```
SENS:NOTC:EMUL ON, (@1,2)
```

The following query returns the notch emulation states of channel 1 and 2.

```
SENS:NOTC:EMUL? (@1,2)
```

Typical response: 1,1

Display Subsystem

The Display subsystem provides the commands to select the U8903A graph display and front panel LCD display, as well as configure the axis settings for the graph and sweep modes.

NOTE

The continuous mode is not supported when the graph display is selected. Running or stopping the SCPI commands will work on the measurement data but not on the graph data due to the memory intensive nature of the data acquisition in the graph display mode.

DISPlay: ANALysis: MODE

Syntax

DISPlay:ANALysis:MODE <mode>
DISPlay:ANALysis:MODE?

Description

Sets the graph display as either time domain, frequency domain (magnitude), or frequency domain (phase). The query returns the graph display mode in the form of MAGN, PHAS, or TIME.

Parameter

ltem	Туре	Range of values	Default value
mode	Discrete	MAGNitude, PHASe, or TIME	MAGNitude

Examples

The following command sets the graph display as frequency domain (magnitude).

DISP: ANAL: MODE MAGN

Display Subsystem

The following query returns the graph display mode.

DISP: ANAL: MODE?

Typical response: MAGN

DISPlay[:WINDow]:GRAPh:TRACe:X:SPACing

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:X:SPACing

<spacing type>

DISPlay[:WINDow]:GRAPh:TRACe:X:SPACing?

Description

Sets the X-axis spacing as either linear or log. The query returns the X-axis spacing type in the form of LIN or LOG.

Parameter

Item	Туре	Range of values	Default value
spacing type	Discrete	LINear or LOGarithmic	LINear

Examples

The following command sets the log X-axis spacing.

DISP:GRAP:TRAC:X:SPAC LOG

The following query returns the X-axis spacing type.

DISP:GRAP:TRAC:X:SPAC?

Typical response: LOG

DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:AUTO

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:AUTO

Description

Performs an autoscale on the X-axis to automatically scale the graph display according to the signal each time this command is sent.

Example

The following command performs an autoscale on the X-axis.

DISP:GRAP:TRAC:X:AUTO

DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:LEFT

Syntax

```
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:LEFT
<minimum limit>
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:LEFT?
```

Description

Sets the value represented by the minimum (left) edge of the X-axis. The query returns the left X-axis setting.

Parameter

Item	Туре	Range of values	Default value
minimum limit	Numeric	1 to 100k (Frequency domain)	1
		0 to 3.277 m (Time domain)	

Display Subsystem

Examples

The following command sets the left X-axis setting to 100.

DISP:GRAP:TRAC:X:LEFT 100

The following query returns the left X-axis setting.

DISP:GRAP:TRAC:X:LEFT?

Typical response: 1.000000E+02

DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:RIGHt

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:RIGHt
<maximum limit>
DISPlay[:WINDow]:GRAPh:TRACe:X[:SCALe]:RIGHt?

Description

Sets the value represented by the maximum (right) edge of the X-axis. The query returns the right X-axis setting.

Parameter

Item	Туре	Range of values	Default value
maximum limit	Numeric	1 to 100k (Frequency domain) 0 to 3.277 m (Time domain)	30000

Examples

The following command sets the right X-axis setting to 10000.

DISP:GRAP:TRAC:X:RIGH 10000

The following query returns the right X-axis setting.

DISP:GRAP:TRAC:X:RIGH?

Typical response: 1.000000E+04

DISPlay[:WINDow]:GRAPh:TRACe:Y:SPACing

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:Y:SPACing

<spacing type>

DISPlay[:WINDow]:GRAPh:TRACe:Y:SPACing?

Description

Sets the Y-axis spacing as either linear or log. The query returns the Y-axis spacing type in the form of LIN or LOG.

Parameter

Item	Туре	Range of values	Default value
spacing type	Discrete	LINear or LOGarithmic	LINear

Examples

The following command sets the log Y-axis spacing.

DISP:GRAP:TRAC:Y:SPAC LOG

The following query returns the Y-axis spacing type.

DISP:GRAP:TRAC:Y:SPAC?

Typical response: LOG

DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:AUTO

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:AUTO

Description

Performs an autoscale on the Y-axis to automatically scale the graph display according to the signal each time this command is sent.

Example

The following command performs an autoscale on the Y-axis.

DISP:GRAP:TRAC:Y:AUTO

DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:BOTTom

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:BOTTom
<minimum limit>
DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:BOTTom?

Description

Sets the value represented by the minimum (bottom) edge of the Y-axis. The query returns the bottom Y-axis setting.

Parameter

Item	Туре	Range of values	Default value
minimum limit	Numeric	-200000 to 200000	-150

Examples

The following command sets the bottom Y-axis setting to -200.

DISP:GRAP:TRAC:Y:BOTT -200

The query returns the bottom Y-axis setting.

DISP:GRAP:TRAC:Y:BOTT?

Typical response: -2.000000E+02

DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:TOP

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:TOP
<maximum limit>
DISPlay[:WINDow]:GRAPh:TRACe:Y[:SCALe]:TOP?

Description

Sets the value represented by the maximum (top) edge of the Y-axis. The query returns the top Y-axis setting.

Parameter

Item	Туре	Range of values	Default value
maximum limit	Numeric	-200000 to 200000	0

Examples

The following command sets the top Y-axis setting to 200.

DISP:GRAP:TRAC:Y:TOP 200

The following query returns the top Y-axis setting.

DISP:GRAP:TRAC:Y:TOP?

Typical response: 2.000000E+02

DISPlay[:WINDow]:GRAPh:TRACe:AUTO

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:AUTO

Description

Performs an autoscale to automatically scale the graph display according to the signal each time this command is sent.

Example

The following command performs an autoscale on the graph.

DISP:GRAP:TRAC:AUTO

DISPlay[:WINDow]:GRAPh:TRACe:HOLD

Syntax

```
DISPlay[:WINDow]:GRAPh:TRACe:HOLD <hold type>,
  (@<channel>)
```

DISPlay[:WINDow]:GRAPh:TRACe:HOLD? (@<channel>)

Description

Sets the hold configuration for the specified channel(s). The query returns the hold configuration type of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
hold type	Discrete	NONE, MAX, or MIN	NONE
channel	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Example

The following command sets the hold configuration to MAX for channel 1.

DISP:GRAP:TRAC:HOLD MAX, (@1)

The following query returns the hold configuration type for channel 1 and 2.

DISP:GRAP:TRAC:HOLD? (@1,2)

Typical response: MAX, NONE

DISPlay[:WINDow]:GRAPh:TRACe:REFerence:STATe

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:REFerence:STATe <state>

DISPlay[:WINDow]:GRAPh:TRACe:REFerence:STATe?

Description

Enables or disables the reference trace in the graph mode. The query returns the reference trace state.

Display Subsystem

Parameter

Item	Туре	Range of values	Default value
state	Discrete	ON or OFF	ON

Examples

The following command enables the reference trace in the graph mode.

DISP:GRAP:TRAC:REF:STAT ON

The following query returns the reference trace state.

DISP:GRAP:TRAC:REF:STAT?

Typical response: ON

DISPlay[:WINDow]:GRAPh:TRACe:REFerence:SLOT

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:REFerence:SLOT
<slot number>

DISPlay[:WINDow]:GRAPh:TRACe:REFerence:SLOT?

Description

Sets the reference trace slot in the graph mode. The query returns the reference trace slot.

Parameter

Item	Туре	Range of values	Default value
slot number	Numeric	1, 2, or 3	1

Examples

The following command sets the reference trace slot to 2.

DISP:GRAP:TRAC:REF:SLOT 2

The following query returns the reference trace slot.

DISP:GRAP:TRAC:REF:SLOT?

Typical response: 2

DISPlay[:WINDow]:GRAPh:TRACe:REFerence:SOURce

Syntax

DISPlay:[:WINDow]:GRAPh:TRACe:REFerence:SOURce

<source type>, <filename>

DISPlay:[:WINDow]:GRAPh:TRACe:REFerence:SOURce?

Description

Sets the source for the current reference trace slot. The query returns the source for the current reference trace slot.

Parameters

Item	Туре	Range of values	Default value
source type	Discrete	NONE, FILE, CH1, or CH2	NONE
filename	String	Valid file path name. Only used if source_type is FILE.	Required parameter
		For example, "\Storage 1\ file.csv". Left blank if source type is channel 1 or channel 2.	

Display Subsystem

Examples

The following command sets the source for the current reference slot to File and named 'file.csv' in the '\Storage 1' directory.

```
DISP:GRAP:TRAC:REF:SOUR FILE, "\Storage 1\
file.csv"
```

The following query returns the source for the current reference slot.

```
DISP:GRAP:TRAC:REF:SOUR?
```

Typical response: FILE

DISPlay[:WINDow]:SWEep:TRACe:X:SPACing

Syntax

```
DISPlay[:WINDow]:SWEep:TRACe:X:SPACing
<spacing type>
DISPlay[:WINDow]:SWEep:TRACe:X:SPACing?
```

Description

Sets the X-axis spacing as either linear or log for the sweep. The query returns the X-axis spacing in the form of LIN or LOG.

Parameter

ltem	Туре	Range of values	Default value
spacing type	Discrete	LINear or LOGarithmic	LOGarithmic

Examples

The following command sets the log X-axis spacing.

DISP:SWE:TRAC:X:SPAC LOG

The following query returns the X-axis spacing type.

DISP:SWE:TRAC:X:SPAC?

Typical response: LOG

DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:AUTO

Syntax

DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:AUTO

Description

Performs an autoscale on the X-axis of the sweep plot to automatically scale the sweep plot according to the signal each time this command is sent.

Example

The following command performs an autoscale on the X-axis.

DISP:SWE:TRAC:X:AUTO

DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:LEFT

Syntax

```
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:LEFT
<minimum limit>
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:LEFT?
```

Description

Sets the value represented by the minimum (left) edge of the X-axis of the sweep plot. The query returns the left X-axis setting.

Display Subsystem

Parameter

Item	Туре	Range of values	Default value
minimum limit	Numeric	Dependent on the start value of the sweep.	20

Examples

The following command sets the left X-axis setting to 5.

DISP:SWE:TRAC:X:LEFT 5

The following query returns the left X-axis setting.

DISP:SWE:TRAC:X:LEFT?

Typical response: 5.000000E+00

DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:RIGHt

Syntax

DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:RIGHt
<maximum limit>
DISPlay[:WINDow]:SWEep:TRACe:X[:SCALe]:RIGHt?

Description

Sets the value represented by the maximum (right) edge of the X-axis of the sweep plot. The query returns the right X-axis setting.

Parameter

Item	Туре	Range of values	Default value
maximum limit	Numeric	Dependent on the start value of the sweep.	20000

Examples

The following command sets the right X-axis setting to 10000.

DISP:SWE:TRAC:X:RIGH 10000

The following query returns the right X-axis setting.

DISP:SWE:TRAC:X:RIGH?

Typical response: 1.000000E+04

DISPlay[:WINDow]:SWEep:TRACe:Y:SPACing

Syntax

DISPlay[:WINDow]:SWEep:TRACe:Y:SPACing
<spacing type>
DISPlay[:WINDow]:SWEep:TRACe:Y:SPACing?

Description

Sets the Y-axis spacing as either linear or log for the sweep. The query returns the Y-axis spacing in the form of LIN or LOG.

Parameter

Item	Туре	Range of values	Default value
spacing type	Discrete	LINear or LOGarithmic	LINear

Examples

The following command sets the log Y-axis spacing.

DISP:SWE:TRAC:Y:SPAC LOG

The following query returns the Y-axis spacing type.

DISP:SWE:TRAC:Y:SPAC?

Typical response: LOG

DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:AUTO

Syntax

DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:AUTO

Description

Performs an autoscale on the Y-axis of the sweep plot to automatically scale the sweep plot according to the signal each time this command is sent.

Example

The following command performs an autoscale on the Y-axis.

DISP:SWE:TRAC:Y:AUTO

DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:BOTTom

Syntax

DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:BOTTom
<minimum limit>
DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:BOTTom?

Description

Sets the value represented by the minimum (bottom) edge of the Y-axis of the sweep plot. The query returns the bottom Y-axis setting.

Parameter

Item	Туре	Range of values	Default value
minimum limit	Numeric	-200000 to 200000	1

Examples

The following command sets the bottom Y-axis setting to 50.

DISP:SWE:TRAC:Y:BOTT 50

The following query returns the bottom Y-axis setting.

DISP:SWE:TRAC:Y:BOTT?

Typical response: 5.000000E+01

DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:TOP

Syntax

DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:TOP
<maximum limit>
DISPlay[:WINDow]:SWEep:TRACe:Y[:SCALe]:TOP?

Description

Sets the value represented by the maximum (top) edge of the Y-axis of the sweep plot. The query returns the top Y-axis setting.

Parameter

ltem	Туре	Range of values	Default value
maximum limit	Numeric	-200000 to 200000	30

Examples

The following command sets the top Y-axis setting to 100.

DISP:SWE:TRAC:Y:TOP 100

The following query returns the top Y-axis setting.

DISP:SWE:TRAC:Y:TOP?

Typical response: 1.000000E+02

Display Subsystem

DISPlay[:WINDow]:SWEep:TRACe:AUTO

Syntax

DISPlay[:WINDow]:SWEep:TRACe:AUTO

Description

Performs an autoscale on the sweep plot to automatically scale the sweep plot according to the signal each time this command is sent.

Example

The following command performs an autoscale on the sweep plot.

DISP:SWE:TRAC:AUTO

DISPlay[:WINDow]:SWEep:TRACe:HOLD

Syntax

```
DISPlay[:WINDow]:SWEep:TRACe:HOLD <hold type>,
  (@<channel>)
DISPlay[:WINDow]:SWEep:TRACe:HOLD? (@<channel>)
```

Description

Sets the hold configuration for the specified channel(s). The query returns the hold configuration type of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
hold type	Discrete	NONE, MAX, or MIN	NONE
channel	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Example

The following command sets the hold configuration to MAX for channel 1.

```
DISP[:WIND]:SWE:TRAC:HOLD MAX, (@1)
```

The following query returns the hold configuration type for channel 1 and 2.

```
DISP[:WIND]:SWE:TRAC:HOLD? (@1,2)
```

Typical response: MAX, NONE

DISPlay[:WINDow]:SWEep:TRACe:FUNCtion

Syntax

DISPlay[:WINDow]:SWEep:TRACe:FUNCtion <function
number>

DISPlay[:WINDow]:SWEep:TRACe:FUNCtion?

Description

Sets the current function in sweep mode. The query returns the current function in sweep mode.

Display Subsystem

Parameter

Item	Туре	Range of values	Default value
function number	Numeric	1 or 2	1

Examples

The following command sets the current function in sweep mode to 1.

DISP:SWE:TRAC:FUNC 1

The following query returns the current function in sweep mode.

DISP:SWE:TRAC:FUNC?

Typical response: 1

DISPlay[:WINDow]:SWEep:TRACe:REFerence:STATe

Syntax

DISPlay[:WINDow]:SWEep:TRACe:REFerence:STATe

<state>

DISPlay[:WINDow]:SWEep:TRACe:REFerence:STATe?

Description

Enables or disables the current reference trace in sweep mode. The query returns the state of the current reference trace.

Parameter

ltem	Туре	Range of values	Default value
state	Discrete	ON or OFF	OFF

Examples

The following command enables the current reference trace.

DISP:SWE:TRAC:REF:STAT ON

The following query returns the state of the current reference trace.

DISP:SWE:TRAC:REF:STAT?

Typical response: ON

DISPlay[:WINDow]:SWEep:TRACe:REFerence:SLOT

Syntax

DISPlay[:WINDow]:SWEep:TRACe:REFerence:SLOT
<slot number>

DISPlay[:WINDow]:SWEep:TRACe:REFerence:SLOT?

Description

Sets the reference trace slot in sweep mode. The query returns the reference trace slot.

Parameter

Item	Туре	Range of values	Default value
slot number	Numeric	1, 2, or 3	1

Examples

The following command sets the reference trace slot to 2.

DISP:SWE:TRAC:REF:SLOT 2

The following query returns the reference trace slot.

DISP: SWE: TRAC: REF: SLOT?

Typical response: 2

DISPlay[:WINDow]:SWEep:TRACe:REFerence:SOURce

Syntax

DISPlay:[:WINDow]:SWEep:TRACe:REFerence:SOURce
<source type>, <filename>
DISPlay:[:WINDow]:SWEep:TRACe:REFerence:SOURce?

Description

Sets the source for the current reference trace slot. The query returns the source for the current reference trace slot.

Parameters

Item	Туре	Range of values	Default value
source type	Discrete	NONE, FILE, CH1, or CH2	NONE
filename	String	Valid file path name. Only used if source_type is FILE.	Required parameter
		For example, "\Storage 1\file.csv". Left blank if source type is channel 1 or channel 2.	

Examples

The following command sets the source for the current reference slot to File and named 'file.csv' in the '\Storage 1' directory.

DISP:SWE:TRAC:REF:SOUR FILE, "\Storage 1\
file.csv"

The following query returns the source for the current reference slot.

DISP:SWE:TRAC:REF:SOUR?

Typical response: FILE

DISPlay[:WINDow]:VIEW

Syntax

DISPlay[:WINDow]:VIEW <view>, <panel>,
[<channel>]

Description

Sets the front panel LCD display type for the specified panel.

The display types with their corresponding <view> parameters are listed as follows.

Parameters

Item	Туре	Range of values	Default value
view	String	Analog Analyzer, Digital Analyzer, Analog Generator, Digital Generator, Digital Analyzer DSI, Digital Analyzer AES, Digital Generator DSI, Digital Generator AES, Audio Data Bits, Audio Active Bits, Bit Error, Sweep, Graph, Sweep Graph, Sweep List, or System	Analog Generator
panel	Discrete	PANel1, PANel2, PANel3, or PANel4	PANel1
channel	Discrete	CH1 or CH2	CH1

- The <channel> parameter is optional.
- When Sweep, Graph, Sweep Graph, Sweep List, or System is the selected display type, the U8903A will ignore the cpanel> and <channel> parameters.

Display Subsystem

Examples

The following command sets the analog analyzer channel 1 at panel 2.

DISP: VIEW "Analog Analyzer", PAN2, CH1

DISPlay[:WINDow]:MODE

Syntax

DISPlay[:WINDow]:MODE <display mode>
DISPlay[:WINDow]:MODE?

Description

Sets the display mode of the front panel display. The query returns the current display mode.

Parameter

Item	Туре	Range of values	Default value
display mode	Discrete	VIEW2 or VIEW4	VIEW2

Examples

The following command sets the front panel display mode to 2-view.

DISP:MODE VIEW2

The following query returns the current display mode.

DISP:MODE?

Typical response: VIEW2

DISPlay[:WINDow]:STATe

Syntax

DISPlay[:WINDow]:STATe <state>
DISPlay[:WINDow]:STATe?

Description

Enables or disables the front panel LCD backlight. The query returns the LCD backlight state as 0 if the state is OFF, or 1 if the state is ON.

Parameter

ltem	Туре	Range of values	Default value
state	Boolean	OFF(0) or ON(1)	ON

Remark

Sending the SYSTem: PRESet or *RST command, or cycling the U8903A power, will enable the LCD backlight.

Examples

The following command enables the front panel LCD backlight.

DISP:STAT ON

The following query returns the LCD backlight state.

DISP:STAT?

Typical response: 1

Display Subsystem

DISPlay:DIGital:ANALysis:MODE

Syntax

DISPlay:DIGital:ANALysis:MODE <mode>

DISPlay:DIGital:ANALysis:MODE?

Description

Sets the graph to display the magnitude of the signal in frequency domain, phase in the frequency domain, or waveform in the time domain for the digital card options. The query returns the digital analysis mode.

MAGNitude	Magnitude in the frequency domain
PHASe	Phase in the frequency domain
TIME	Signal waveform in the time domain

Parameter

Item	Туре	Range of values	Default value
mode	Discrete	MAGNitude, PHASe, or TIME	MAGNitude

Examples

The following command sets the analysis mode to Magnitude.

DISP:DIG:ANAL:MODE MAGN

The following query returns the analysis mode.

DISP:DIG:ANAL:MODE?
Typical response: MAGN

DISPlay[:WINDow]:DIGital:GRAPh:TRACe:HOLD

Syntax

```
DISPlay[:WINDow]:DIGital:GRAPh:TRACe:HOLD <hold
type>, (@<channel>)
DISPlay[:WINDow]:DIGital:GRAPh:TRACe:HOLD?
(@<channel>)
```

Description

Sets the hold configuration for the specified channel(s). The query returns the hold configuration type of the selected channel(s). Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
hold type	Discrete	NONE, MAX, or MIN	NONE
channel	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Example

The following command sets the hold configuration to MAX for channel 1.

```
DISP:DIG:GRAP:TRAC:HOLD MAX, (@D1)
```

The following query returns the hold configuration type for channel 1 and 2.

```
DISP:DIG:GRAP:TRAC:HOLD? (@D1,D2)
```

Typical response: MAX, NONE

Display Subsystem

DISPlay[:WINDow]:GRAPh:TRACe:INTerface

Syntax

DISPlay[:WINDow]:GRAPh:TRACe:INTerface

<interface type>

DISPlay[:WINDow]:GRAPh:TRACe:INTerface?

Description

Sets the interface type to be displayed in the graph mode. The query returns the interface type.

Parameter

ltem	Туре	Range of values	Default value
interface type	Discrete	ANALOG or DIGITAL	ANALOG

Examples

The following command sets the interface type to Digital.

DISP:GRAP:TRAC:INT DIGITAL

The following query returns the interface type.

DISP:GRAP:TRAC:INT?

Typical response: DIGITAL

Calculate Subsystem

The Calculate subsystem provides the commands to configure the frequency domain harmonics settings as well as the graph marker functions.

CALCulate:HARMonic:COUNt

Syntax

CALCulate: HARMonic: COUNt < count>
CALCulate: HARMonic: COUNt?

Description

Sets the number of signal harmonic components in the frequency domain (magnitude) display. The query returns the number of harmonic components.

Parameter

Item	Туре	Range of values	Default value
count	Numeric	1 to 64	10

- The graph display must be set to frequency domain (magnitude) using the DISPlay: ANALysis: MODE command.
- This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.

Calculate Subsystem

Examples

The following command sets eight signal harmonic components.

CALC: HARM: COUN 8

The following query returns the number of harmonic components.

CALC: HARM: COUN?
Typical response: 8

CALCulate: HARMonic: FUNDamental?

Syntax

CALCulate:HARMonic:FUNDamental? (@<channel>)

Description

Returns the signal fundamental frequency in Hz for the specified channel.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	Required parameter

- The graph display must be set to frequency domain (magnitude) using the DISPlay: ANALysis: MODE command.
- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command at the particular input channel.

Example

The following commands are used to obtain the signal fundamental frequency of channel 2.

INIT:GRAP (@2)

CALC: HARM: FUND? (@2)

Typical response: 1.000000E+03

CALCulate: HARMonic: VALue?

Syntax

CALCulate: HARMonic: VALue? (@<channel>)

Description

Returns the harmonic component results of the trace for the specified channel. Multiple responses are separated by commas.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	Required parameter

- The graph display must be set to frequency domain (magnitude) using the DISPlay: ANALysis: MODE command.
- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command at the particular input channel.
- The number of harmonic component results returned is based on the harmonic count specified in the CALCulate: HARMonic: COUNT command.

Calculate Subsystem

Example

The following commands are used to obtain the harmonic component results of channel 2.

```
INIT:GRAP (@2)

CALC:HARM:VAL? (@2)

Typical response:
-1.440191E+00,-6.487222E+01,-7.282130E+01,
-7.767053E+01,-8.125921E+01,-8.396585E+01,
-8.624970E+01,-8.790641E+01
```

CALCulate: HARMonic: FREQuencies?

Syntax

CALCulate:HARMonic:FREQuencies? (@<channel>)

Description

Returns the signal harmonic frequency values for the specified channel. Multiple responses are separated by commas.

Parameter

ltem	Туре	Range of values	Default value
channel	Numeric	1 or 2	Required parameter

- The graph display must be set to frequency domain (magnitude) using the DISPlay: ANALysis: MODE command.
- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command at the particular input channel.

• The number of harmonic frequency values returned is based on the harmonic count specified in the CALCulate: HARMonic: COUNt command.

Example

The following commands are used to obtain the harmonic frequency values of channel 2.

```
INIT:GRAP (@2)

CALC:HARM:FREQ? (@2)

Typical response:
9.918210E+02,2.002721E+03,2.994543E+03,
4.005431E+03,4.997250E+03,6.008151E+03,
6.999972E+03,7.991791E+03
```

CALCulate: THD istortion?

Syntax

CALCulate: THDistortion? <unit>, (@<channel>)

Description

Returns the Total Harmonic Distortion (THD) value of the input signal in the specified unit for the selected channel. The returned value can either be in dB or percentage by setting <unit> to DB or PCT respectively.

Parameters

Item	Туре	Range of values	Default value
unit	Discrete	DB or PCT	PCT
channel	Numeric	1 or 2	Required parameter

Calculate Subsystem

Remarks

- The graph display must be set to frequency domain (magnitude) using the DISPlay: ANALysis: MODE command.
- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command at the particular input channel.

Example

The following commands are used to obtain the distortion value of the input signal at channel 2 in percentage.

```
INIT:GRAP (@2)
CALC:THD? PCT, (@2)
Typical response: 1.691385E+01
```

CALCulate:DIGital:HARMonic:COUNt

Syntax

```
CALCulate:DIGital:HARMonic:COUNt <count>
CALCulate:DIGital:HARMonic:COUNt?
```

Description

Sets the number of signal harmonic components in the frequency domain (magnitude) display. The query returns the number of harmonic components.

Parameter

Item	Туре	Range of values	Default value
count	Numeric	1 to 64	10

Remarks

• The graph display must be set to frequency domain (magnitude) using the DISPlay:DIGital:ANALysis:MODE command.

• This command is only applicable after the graph data has been acquired using the

INITiate[:IMMediate]:DIGital:GRAPh command.

Examples

The following command sets eight signal harmonic components.

CALC: DIG: HARM: COUN 8

The following query returns the number of harmonic components.

CALC: DIG: HARM: COUN?

Typical response: 8

CALCulate:DIGital:HARMonic:FUNDamental?

Syntax

CALCulate:DIGital:HARMonic:FUNDamental?
(@<channel>)

Description

Returns the signal fundamental frequency in Hz for the specified channel.

Calculate Subsystem

Parameter

Item	Туре	Range of values	Default value
channel	Discrete	D1 or D2	Required parameter

Remarks

• The graph display must be set to frequency domain (magnitude) using the DISPlay:DIGital:ANALysis:MODE command.

• This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:DIGital:GRAPh command at the particular input channel.

Example

The following commands are used to obtain the signal fundamental frequency of channel 2.

INIT:DIG:GRAP (@D2)
CALC:DIG:HARM:FUND? (@D2)
Typical response: 1.000000E+03

CALCulate:DIGital:HARMonic:VALue?

Syntax

CALCulate:DIGital:HARMonic:VALue? (@<channel>)

Description

Returns the harmonic component results of the trace for the specified channel. Multiple responses are separated by commas.

Parameter

Item	Туре	Range of values	Default value
channel	Discrete	D1 or D2	Required parameter

Remarks

- The graph display must be set to frequency domain (magnitude) using the DISPlay:DIGital:ANALysis:MODE command.
- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:DIGital:GRAPh command at the particular input channel.
- The number of harmonic component results returned is based on the harmonic count specified in the CALCulate:DIGital:HARMonic:COUNt command.

Example

The following commands are used to obtain the harmonic component results of channel 2.

```
INIT:DIG:GRAP (@D2)

CALC:DIG:HARM:VAL? (@D2)

Typical response:
-1.440191E+00,-6.487222E+01,-7.282130E+01,
-7.767053E+01,-8.125921E+01,-8.396585E+01,
-8.624970E+01,-8.790641E+01
```

CALCulate:DIGital:HARMonic:FREQuencies?

Syntax

CALCulate:DIGital:HARMonic:FREQuencies?
(@<channel>)

Description

Returns the signal harmonic frequency values for the specified channel. Multiple responses are separated by commas.

Parameter

ltem	Туре	Range of values	Default value
channel	Discrete	D1 or D2	Required parameter

Remarks

- The graph display must be set to frequency domain (magnitude) using the DISPlay:DIGital:ANALysis:MODE command.
- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:DIGital:GRAPh command at the particular input channel.
- The number of harmonic frequency values returned is based on the harmonic count specified in the CALCulate:DIGital:HARMonic:COUNt command.

Example

The following commands are used to obtain the harmonic frequency values of channel 2.

```
INIT:DIG:GRAP (@D2)
CALC:DIG:HARM:FREO? (@D2)
```

Typical response:

```
9.918210E+02,2.002721E+03,2.994543E+03,
4.005431E+03,4.997250E+03,6.008151E+03,
6.999972E+03,7.991791E+03
```

CALCulate:DIGital:THDistortion?

Syntax

```
CALCulate:DIGital:THDistortion? <unit>,
  (@<channel>)
```

Description

Returns the Total Harmonic Distortion (THD) value of the input signal in the specified unit for the selected channel. The returned value can either be in dB or percentage by setting <unit> to DB or PCT respectively.

Parameters

Item	Туре	Range of values	Default value
unit	Discrete	DB or PCT	PCT
channel	Discrete	D1 or D2	Required parameter

- The graph display must be set to frequency domain (magnitude) using the DISPlay:DIGital:ANALysis:MODE command.
- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:DIGital:GRAPh command at the particular input channel.

Calculate Subsystem

Example

The following commands are used to obtain the distortion value of the input signal at channel 2 in percentage.

INIT:DIG:GRAP (@D2)

CALC:DIG:THD? PCT, (@D2)

Typical response: 1.691385E+01

CALCulate:GRAPh:MARKer:THReshold[:LEVel]

Syntax

CALCulate:GRAPh:MARKer:THReshold[:LEVel]
<threshold level>

CALCulate:GRAPh:MARKer:THReshold[:LEVel]?

Description

Sets the threshold level that the marker can identify as a peak or minimum on the graph display in the graph mode. If the trace is above the threshold level, it will be identified as a peak, whereas the trace below the threshold level will be identified as a minimum. The query returns the specified threshold level.

Parameter

Item	Туре	Range of values	Default value
threshold level	Numeric	Within the top edge and bottom edge of the display	-100

Remark

This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.

Examples

The following command sets the threshold level to 20.

CALC:GRAP:MARK:THR 20

The following query returns the threshold level.

CALC: GRAP: MARK: THR?

Typical response: 2.000000E+01

CALCulate:GRAPh:MARKer:THReshold:STATe

Syntax

CALCulate:GRAPh:MARKer:THReshold:STATe

<threshold state>

CALCulate: GRAPh: MARKer: THReshold: STATe?

Description

Turns on or off the threshold on the graph display in the graph mode. The query returns the threshold state as 0 if the state is OFF, or 1 if the state is ON.

Parameter

ltem	Туре	Range of values	Default value
threshold state	Boolean	OFF(0) or ON(1)	OFF

Remark

This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.

Calculate Subsystem

Examples

The following command turns on the threshold on the graph display.

CALC: GRAP: MARK: THR: STAT ON

The following query returns the threshold state.

CALC: GRAP: MARK: THR: STAT?

Typical response: 1

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:STATe

Syntax

CALCulate: GRAPh: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: STATE?

Description

Turns on or off the selected marker on the graph display in the graph mode. The selected marker will become the active marker when it is turned on. The query returns the marker state as 0 if the marker state is OFF, or 1 if the marker state is ON.

Parameter

ltem	Туре	Range of values	Default value
state	Boolean	OFF(0) or ON(1)	OFF

Remark

This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.

Examples

The following command turns on marker 2 on the graph display.

CALC: GRAP: MARK2: STAT ON

The following query returns the state for marker 2.

CALC: GRAP: MARK2: STAT?

Typical response: 1

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:TRACe

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:TRACe < trace no>

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:TRACe?

Description

Assigns the marker to the trace of the specified channel on the graph display in the graph mode. The trace number corresponds with the channel number. For example, trace CHANnel1 represents the trace for channel 1. The selected marker will become the active marker. R1, R2, and R3 correspond to the respective reference traces loaded into the graph. The query returns the trace number for the specified marker.

Parameter

Item	Туре	Range of values	Default value
trace no	Discrete	CHANnel1, CHANnel2, R1, R2, or R3	CHANnel1

Calculate Subsystem

Remarks

- This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- If a marker is activated using other command without assigning a channel to it, the marker will be assigned to channel 1 by default.

Examples

The following command assigns marker 1 to the channel 2 trace on the graph display.

CALC:GRAP:MARK:TRAC CHAN2

The following query returns the trace number for marker 1.

CALC: GRAP: MARK: TRAC?

Typical response: CHAN2

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:X

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:X <x position>
CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:X?

Description

Sets the marker X-axis value on the graph display in the graph mode. The selected marker will become the active marker. The query returns the marker X-axis value. If the marker state is off, the response is not a number (NAN).

Parameter

Item	Туре	Range of values	Default value
x position	Numeric	-200000 to 200000	0

Remark

This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.

Examples

The following command sets the marker 2 X-axis value to 550 Hz on the graph display. (Assume that the graph is in the frequency domain mode)

CALC:GRAP:MARK2:X 550

The following query returns the marker 2 X-axis value.

CALC: GRAP: MARK2: X?

Typical response: 5.500000E+02

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:Y?

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:Y?

Description

Returns the marker Y-axis value on the graph display in the graph mode.

Calculate Subsystem

Remarks

- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- If the graph analysis mode is set to FFT magnitude, the returned value is in dBV.
- If the graph analysis mode is set to FFT phase, the returned value is in degree.
- If the graph analysis mode is set to time domain, the returned value is in Vrms.
- If the marker state is off, the response is not a number (NAN).

Example

The following query returns the marker 2 Y-axis value.

CALC: GRAP: MARK2: Y?

Typical response: 0.000000E+00

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:PEAK

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:PEAK <direction>

Description

Searches for the peak value of the trace data by placing the specified marker at either the left or right peak of the graph display in the graph mode. Selecting all will search for the highest peak value from the left and right direction. The specified marker will become the active marker.

Parameter

Item	Туре	Range of values	Default value
direction	Discrete	LEFT, RIGHt, or ALL	RIGHt

Remarks

- This command is similar to the Peak Search softkey at the front panel.
- This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- The top and bottom of the graph must be scaled correctly. Any peaks out of the graph scale will not be included into the peak calculation.

Example

The following command places marker 2 at the left peak of the graph display.

CALC: GRAP: MARK2: PEAK LEFT

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:MIN

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:MIN <direction>

Description

Searches for the minimum value of the trace data by placing the specified marker at either the left or right minimum of the graph display in the graph mode. Selecting all will search for the lowest minimum value from the left and right direction. The specified marker will become the active marker.

Calculate Subsystem

Parameter

Item	Туре	Range of values	Default value
direction	Discrete	LEFT, RIGHt, or ALL	RIGHt

Remarks

- This command is similar to the Minimum Search softkey at the front panel.
- This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- The top and bottom of the graph must be scaled correctly. Any peaks out of the graph scale will not be included into the peak calculation.

Example

The following command places marker 2 at the right minimum of the graph display.

CALC: GRAP: MARK2: MIN RIGH

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:REFerence

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:REFerence

<reference marker no>

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:REFerence?

Description

Sets the reference marker for the selected marker on the graph display in the graph mode. The query returns the reference marker for the specified marker.

Parameter

Item	Туре	Range of values	Default value
reference marker no	Discrete	M1, M2, M3, M4, M5, M6, M7, M8, or OFF	OFF

Remarks

- This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- A marker cannot be referenced to itself.
- Sending this command will turn on the reference marker.
 Select OFF to turn off the reference marker.
- If the selected marker has no reference marker when queried, the -200,"Execution Error;The marker has no reference marker" error will appear.

Examples

The following command sets the reference marker as marker 2 for marker 1 on the graph display.

CALC:GRAP:MARK1:REF M2

The following query returns the reference marker for marker 1.

CALC: GRAP: MARK1: REF?

Typical response: M2

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:XDELta?

Syntax

CALCulate: GRAPh: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: XDELta?

Description

Returns the difference in the X-axis value between the selected marker and its reference marker on the graph display in the graph mode.

Remarks

- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- If the marker state is off, the response is not a number (NAN).
- If the selected marker has no reference marker, the response is also not a number (NAN).

Examples

The following query returns the delta X-axis value for marker 2.

CALC: GRAP: MARK2: XDEL?

Typical response: 3.500000E+02

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:YDELta?

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:YDELta?

Description

Returns the difference in the Y-axis value between the selected marker and its reference marker on the graph display in the graph mode.

Remarks

- This query is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- If the marker state is off, the response is not a number (NAN).
- If the selected marker has no reference marker, the response is also not a number (NAN).

Example

The following query returns the delta Y-axis value for marker 2.

CALC: GRAP: MARK2: YDEL?

Typical response: 5.000000E+00

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:MOVement

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8:MOVement <movement characteristic>

CALCulate: GRAPh: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: MOVement?

Description

Sets the marker movement characteristic of either single or in pair on the graph display in the graph mode. The query returns the marker movement characteristic in the form of either SING or PAIR.

The description for each <movement characteristic> parameter is shown as follows.

SINGle Move only the selected marker on the graph.

PAIR Move both the selected and reference markers in the same direction on the graph.

Parameters

Item	Туре	Range of values	Default value
movement characteristic	Discrete	SINGle or PAIR	SINGle

- This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- To move the markers in pairs, you need to specify the reference marker of the selected marker prior to sending this command.

Examples

The following command sequence sets marker 1 and marker 2 as its reference marker to move together on the graph.

CALC:GRAP:MARK1:REF M2

CALC:GRAP:MARK1:MOV PAIR

The following query returns the movement characteristic of marker 1.

CALC: GRAP: MARK1: MOV?

Typical response: PAIR

CALCulate:GRAPh:MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8 [:SET]:MODE

Syntax

CALCulate:GRAPh:MARKer[1]|2|3|4|5|6|7|8[:SET]: MODE <marker mode>

Description

Positions the marker at either the start, stop, or center points of the graph in the graph mode. You may also expand the area between the selected marker and its reference marker.

The description for each <marker mode> parameter is shown as follows.

STARt Position the marker at the graph start point.

STOP Position the marker at the graph stop point.

CENTER Position the marker at the graph center point.

DSPan Expand the area of the graph between the selected marker and its reference marker.

Calculate Subsystem

Parameter

Item	Туре	Range of values	Default value
marker mode	Discrete	STARt, STOP, CENTer, or DSPan	Required parameter

Remarks

- This command is only applicable after the graph data has been acquired using the INITiate[:IMMediate]:GRAPh command.
- The DSPan mode is only applicable for a selected marker which has a reference marker.

Example

The following command positions marker 2 at the graph start point.

CALC: GRAP: MARK1: MODE STAR

CALCulate:SWEep:MARKer:THReshold[:LEVel]

Syntax

CALCulate:SWEep:MARKer:THReshold[:LEVel]

<threshold level>

CALCulate:SWEep:MARKer:THReshold[:LEVel]?

Description

Sets the threshold level that the marker can identify as a peak or minimum on the graph display in the sweep mode. If the trace is above the threshold level, it will be identified as a peak, whereas the trace below the threshold level will be identified as a minimum. The query returns the specified threshold level.

Parameter

Item	Туре	Range of values	Default value
threshold level	Numeric	Within the top edge and bottom edge of the display	0

Remark

This command is only applicable after the sweep data has been acquired using the <code>INITiate[:IMMediate]:SWEep</code> command.

Examples

The following command sets the threshold level to 20.

CALC:SWE:MARK:THR 20

The following query returns the threshold level.

CALC: SWE: MARK: THR?

Typical response: 2.000000E+01

CALCulate:SWEep:MARKer:THReshold:STATe

Syntax

CALCulate: SWEep: MARKer: THReshold: STATe

<threshold state>

CALCulate:SWEep:MARKer:THReshold:STATe?

Description

Turns on or off the threshold on the graph display in the sweep mode. The query returns the threshold state as 0 if the state is OFF, or 1 if the state is ON.

Calculate Subsystem

Parameter

Item	Туре	Range of values	Default value
threshold state	Boolean	OFF(0) or ON(1)	OFF

Remark

This command is only applicable after the sweep data has been acquired using the <code>INITiate[:IMMediate]:SWEep</code> command.

Examples

The following command turns on the threshold on the graph display.

CALC: SWE: MARK: THR: STAT ON

The following query returns the threshold state.

CALC: SWE: MARK: THR: STAT?

Typical response: 1

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:STATe

Syntax

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: STATE

<state>

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: STATE?

Description

Turns on or off the selected marker on the graph display in the sweep mode. The selected marker will become the active marker when it is turned on. The query returns the marker state as 0 if the marker state is OFF, or 1 if the marker state is ON.

Parameter

Item	Туре	Range of values	Default value
state	Boolean	OFF(0) or ON(1)	OFF

Remark

This command is only applicable after the sweep data has been acquired using the <code>INITiate[:IMMediate]:SWEep</code> command.

Examples

The following command turns on marker 2 on the graph display.

CALC:SWE:MARK2:STAT ON

The following query returns the state for marker 2.

CALC: SWE: MARK2: STAT?

Typical response: 1

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:TRACe

Syntax

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:TRACe <trace no>

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: TRACe?

Description

Assigns the marker to the trace of the specified channel on the graph display in the graph mode. The trace number corresponds with the channel number. For example, trace CHANnel1 represents the trace for channel 1. The selected marker will become the active marker. R1, R2, and R3 correspond to the respective reference traces loaded into the graph. The query returns the trace number for the specified marker.

Parameter

Item	Туре	Range of values	Default value
trace no	Discrete	CHANnel1, CHANnel2, R1, R2, or R3	CHANnel1

Remarks

- This query is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- When the legacy sweep mode is activated, the trace value is automatically changed according to the sweep channel and cannot be configured to another channel. However, the trace can still be configured to the reference traces.

Example

The following command assigns marker 1 to the channel 2 trace on the graph display of the sweep mode.

CALC:SWE:MARK:TRAC CHAN2

The following query returns the trace number for marker 1 in the graph view of the sweep mode.

CALC: SWE: MARK: TRAC?

Typical response: CHAN2

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:X

Syntax

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:X <x position>
CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:X?

Description

Sets the marker X-axis value on the graph display in the sweep mode. The selected marker will become the active marker. The query returns the marker X-axis value. If the marker state is off, the response is not a number (NAN).

Parameter

Item	Туре	Range of values	Default value
x position	Numeric	-200000 to 200000	0

Remark

This command is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.

Examples

The following command sets the marker 2 X-axis value to 550 Hz on the graph display.

CALC:SWE:MARK2:X 550

Calculate Subsystem

The following query returns the marker 2 X-axis value.

CALC: SWE: MARK2: X?

Typical response: 5.500000E+02

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:Y?

Syntax

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: Y?

Description

Returns the marker Y-axis value on the graph display in the sweep mode.

Remarks

- This query is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- If the marker state is off, the response is not a number (NAN).

Example

The following query returns the marker 2 Y-axis value.

CALC:SWE:MARK2:Y?

Typical response: 0.000000E+00

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:PEAK

Syntax

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:PEAK <direction>

Description

Searches for the peak value of the trace data by placing the specified marker at either the left or right peak of the graph display in the sweep mode. Selecting all will search for the highest peak value from the left and right direction. The specified marker will become the active marker.

Parameter

Item	Туре	Range of values	Default value
direction	Discrete	LEFT, RIGHt or ALL	RIGHt

Remarks

- This command is similar to the Peak Search softkey at the front panel.
- This command is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- The top and bottom of the graph must be scaled correctly. Any peaks out of the graph scale will not be included in the peak calculation.

Example

The following command places marker 2 at the left peak of the graph display.

CALC: SWE: MARK2: PEAK LEFT

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:MIN

Syntax

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: MIN < direction>

Description

Searches for the minimum value of the trace data by placing the specified marker at either the left or right minimum of the graph display in the sweep mode. Selecting all will search for the lowest minimum value from the left and right direction. The specified marker will become the active marker.

Parameter

Item	Туре	Range of values	Default value
direction	Discrete	LEFT, RIGHt, or ALL	RIGHt

Remarks

- This command is similar to the Minimum Search softkey at the front panel.
- This command is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- The top and bottom of the graph must be scaled correctly. Any peaks out of the graph scale will not be included in the peak calculation.

Example

The following command places marker 2 at the right minimum of the graph display.

CALC:SWE:MARK2:MIN RIGH

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:REFerence

Syntax

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8 : REFerence

Description

Sets the reference marker for the selected marker on the graph display in the sweep mode. The query returns the reference marker for the specified marker.

Parameter

ltem	Туре	Range of values	Default value
reference marker no	Discrete	M1, M2, M3, M4, M5, M6, M7, M8, or OFF	OFF

Remarks

- This command is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- · A marker cannot be referenced to itself.
- Sending this command will turn on the reference marker.
 Select OFF to turn off the reference marker.
- If the selected marker has no reference marker when queried, the -200,"Execution Error;The marker has no reference marker" error will appear.

Examples

The following command sets the reference marker as marker 2 for marker 1 on the graph display.

CALC:SWE:MARK1:REF M2

Calculate Subsystem

The following query returns the reference marker for marker 1.

CALC: SWE: MARK1: REF?

Typical response: M2

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:XDELta?

Syntax

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: XDELta?

Description

Returns the difference in the X-axis value between the selected marker and its reference marker on the graph display in the sweep mode.

Remarks

- This query is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- If the marker state is off, the response is not a number (NAN).
- If the selected marker has no reference marker, the response is also not a number (NAN).

Example

The following query returns the delta X-axis value for marker 2.

CALC: SWE: MARK2: XDEL?

Typical response: 3.500000E+02

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:YDELta?

Syntax

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: YDELta?

Description

Returns the difference in the Y-axis value between the selected marker and its reference marker on the graph display in the sweep mode.

Remarks

- This query is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- If the marker state is off, the response is not a number (NAN).
- If the selected marker has no reference marker, the response is also not a number (NAN).

Example

The following query returns the delta Y-axis value for marker 2.

CALC: SWE: MARK2: YDEL?

Typical response: 5.000000E+00

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8:MOVement

Syntax

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: MOVement <movement characteristic>

CALCulate: SWEep: MARKer[1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: MOVement?

Description

Sets the marker movement characteristic of either single or in pair on the graph display in the sweep mode. The query returns the marker movement characteristic in the form of either SING or PAIR.

The description for each <movement characteristic> parameter is shown as follows.

SINGle Move only the selected marker on the graph.

PAIR Move both the selected and reference markers

in the same direction on the graph.

Parameter

Item	Туре	Range of values	Default value
movement characteristic	Discrete	SINGle or PAIR	SINGle

Remarks

- This command is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- To move the markers in pairs, you need to specify the reference marker of the selected marker prior to sending this command.

Examples

The following command sequence sets marker 1 and marker 2 as its reference marker to move together on the graph.

CALC:SWE:MARK1:REF M2

CALC:SWE:MARK1:MOV PAIR

The following query returns the movement characteristic of marker 1.

CALC: SWE: MARK1: MOV?

Typical response: PAIR

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8[:SET]:MODE

Syntax

CALCulate:SWEep:MARKer[1]|2|3|4|5|6|7|8[:SET]:
MODE <marker mode>

Description

Positions the marker at either the start, stop, or center points of the graph in the sweep mode. You may also expand the area between the selected marker and its reference marker.

The description for each <marker mode> parameter is shown as follows.

Position the marker at the graph start point.

STOP Position the marker at the graph stop point.

CENTER Position the marker at the graph center point.

Expand the area of the graph between the selected marker and its reference marker.

Calculate Subsystem

Parameter

Item	Туре	Range of values	Default value
marker mode	Discrete	STARt, STOP, CENTer, or DSPan	Required parameter

Remarks

- This command is only applicable after the sweep data has been acquired using the INITiate[:IMMediate]:SWEep command.
- The DSPan mode is only applicable for a selected marker which has a reference marker.

Example

The following command positions marker 2 at the graph start point.

CALC: SWE: MARK2: MODE STAR

CALCulate:FORMat:LEVel

Syntax

```
CALCulate:FORMat:LEVel <format>, (@<channel>)
CALCulate:FORMat:LEVel? (@<channel>)
```

Description

Sets the format of the measurement data for the specified channel(s) for level measurement function such as Vac, Vdc, and Noise Level. The query returns the format of the measurement data of the selected channel(s).

The description for each <format> parameter is shown as follows.

OFF Returns the measurement data in V. LOGarithmic Returns the measurement data in dBr. LINear Returns the measurement data in x.

Parameters

Parameter	Туре	Range of values	Default value
format	Discrete	OFF, LOGarithmic, or LINear	OFF
channel	Numeric	1 or 2	1

Remark

After this command is sent, the calculated measurement data can be acquired using the FETCh: SCALar? command for analyzer mode or the FETCh: SWEep? command for sweep mode.

Example

The following command sets the level measurement format to linear for channel 1.

CALC: FORM: LEV LIN, (@1)

The following query returns the format of the measurement data for channel 1.

CALC: FORM: LEV? (@1)

Typical response: LIN

Calculate Subsystem

CALCulate:FORMat:FREQuency

Syntax

CALCulate:FORMat:FREQuency <format>,
 (@<channel>)

CALCulate:FORMat:FREQuency? (@<channel>)

Description

Sets the format of the measurement data for the specified channel(s) for frequency measurement function. The query returns the format of the measurement data of the selected channel(s).

The description for each <format> parameter is shown as follows.

OFF Returns the measurement data in Hz. Delta Returns the measurement data in Δ Hz.

Parameters

Parameter	Туре	Range of values	Default value
format	Discrete	OFF or DELTa	OFF
channel	Numeric	1 or 2	1

Remark

After this command is sent, the calculated measurement data can be acquired using the FETCh: SCALar? command for analyzer mode or the FETCh: SWEep? command for sweep mode.

Example

The following command sets the frequency measurement format to delta for channel 1.

```
CALC: FORM: FREQ DELT, (@1)
```

The following query returns the format of the measurement data for channel 1.

```
CALC: FORM: FREQ? (@1)

Typical response: DELT
```

CALCulate:FORMat:RATio

Syntax

```
CALCulate:FORMat:RATio <format>, (@<channel>)
CALCulate:FORMat:RATio? (@<channel>)
```

Description

Sets the format of the measurement data for the specified channel(s) for ratio measurement function such as SINAD and THD Ratio, DFD, IMD, crosstalk, and SNR. The query returns the format of the measurement data of the selected channel(s).

The description for each <format> parameter is shown as follows.

OFF	Returns	the	measurement	data	in	dB.
DELTa	Returns	the	measurement	data	in	ΔdB .
LINear	Returns	the	measurement	data	in	x.

Calculate Subsystem

Parameters

Parameter	Туре	Range of values	Default value
format	Discrete	OFF, DELTa, or LINear	OFF
channel	Numeric	1 or 2	1

Remark

After this command is sent, the calculated measurement data can be acquired using the FETCh: SCALar? command.

Example

The following command sets the ratio measurement format to delta for channel 1.

CALC: FORM: RAT DELT, (@1)

The following query returns the format of the measurement data for channel 1.

CALC: FORM: RAT? (@1)

Typical response: DELT

CALCulate:DIGital:FORMat:LEVel

Syntax

CALCulate:DIGital:FORMat:LEVel <format>,
 (@<channel>)

CALCulate:DIGital:FORMat:LEVel? (@<channel>)

Description

Sets the format of the measurement data for the specified channel(s) for level measurement function such as Vac, Vdc, Noise Level, THD+N Level, Positive Peak, and Negative Peak. The query returns the format of the measurement data of the selected channel(s).

The description for each <format> parameter is shown as follows.

OFF Returns the measurement data in V. LOGarithmic Returns the measurement data in dBr. LINear Returns the measurement data in x.

Parameters

Parameter	Туре	Range of values	Default value
format	Discrete	OFF, LOGarithmic, or LINear	OFF
channel	Numeric	1 or 2	1

Remark

After this command is sent, the calculated measurement data can be acquired using the FETCh:DIGital:SCALar? command for analyzer mode or the FETCh:SWEep? command for sweep mode.

Example

The following command sets the level measurement format to linear for channel 1.

CALC:DIG:FORM:LEV LIN, (@1)

The following query returns the format of the measurement data for channel 1.

CALC:DIG:FORM:LEV? (@1)

Typical response: LIN

CALCulate:DIGital:FORMat:FREQuency

Syntax

CALCulate:DIGital:FORMat:FREQuency <format>,
 (@<channel>)

CALCulate:DIGital:FORMat:FREQuency? (@<channel>)

Description

Sets the format of the measurement data for the specified channel(s) for frequency measurement function. The query returns the format of the measurement data of the selected channel(s).

The description for each <format> parameter is shown as follows.

OFF Returns the measurement data in Hz. Delta Returns the measurement data in ΔHz .

Parameters

Parameter	Туре	Range of values	Default value
format	Discrete	OFF or DELTa	OFF
channel	Numeric	1 or 2	1

Remark

After this command is sent, the calculated measurement data can be acquired using the FETCh:DIGital:SCALar? command for analyzer mode or the FETCh:SWEep? command for sweep mode.

Example

The following command sets the frequency measurement format to delta for channel 1.

```
CALC:DIG:FORM:FREQ DELT, (@1)
```

The following query returns the format of the measurement data for channel 1.

```
CALC:DIG:FORM:FREQ? (@1)
```

Typical response: DELT

CALCulate:DIGital:FORMat:RATio

Syntax

```
CALCulate:DIGital:FORMat:RATio <format>,
  (@<channel>)
CALCulate:DIGital:FORMat:RATio? (@<channel>)
```

Description

Sets the format of the measurement data for the specified channel(s) for ratio measurement function such as SINAD and THD Ratio, DFD, IMD, crosstalk, and SNR. The query returns the format of the measurement data of the selected channel(s).

The description for each <format> parameter is shown as follows.

OFF	Returns the measurement data in dB.
DELTa	Returns the measurement data in $\Delta dB. \label{eq:delta-delta}$
LTNear	Returns the measurement data in x.

Calculate Subsystem

Parameters

Parameter	Туре	Range of values	Default value
format	Discrete	OFF, DELTa, or LINear	OFF
channel	Numeric	1 or 2	1

Remark

After this command is sent, the calculated measurement data can be acquired using the FETCh:DIGital:SCALar? command for analyzer mode or the FETCh:SWEep? command for sweep mode.

Example

The following command sets the ratio measurement format to delta for channel 1.

CALC:DIG:FORM:RAT DELT, (@1)

The following query returns the format of the measurement data for channel 1.

CALC:DIG:FORM:RAT? (@1)

Typical response: DELT

Data Subsystem

The Data subsystem provides the commands which enable you to download the user-defined data for sweep, arbitrary waveform, or filter into the U8903A internal memory.

DATA:SWEep

Syntax

DATA: SWEep <data>

Description

Downloads the 32-bit floating point sweep data into the U8903A internal sweep memory. The <data> parameter is in the IEEE-488.2 binary block program data format.

Remarks

- Refer to "Appendix G: Using the IEEE-488.2 Binary Block Format" on page 583 for details on the <data> format.
- The maximum number of allowable sweep points is 1024.
- Refer to "Performing sweep" on page 488 for the example of the List sweep mode.
- Sending the SYSTem:PRESet, *RST, or SYSTem:RESet[:MODE] SWEep command, or cycling the U8903A power, will delete the downloaded sweep points.
- If you select amplitude as the sweep parameter, your downloaded amplitude points are assumed in unit Vp.
- The command SOURce: SWEep: CHANnel must be sent prior to sending the DATA: SWEep command.

Data Subsystem

• When you send this command, the custom sweep points in the file will be loaded into the U8903A based on the source sweep channel set in the SOURce: SWEep: CHANnel command. The sweep mode will also be set to Automatic List or Manual list, depending on the previous sweep mode.

Example

The following command downloads the sweep data points into the U8903A internal sweep memory.

DATA:SWE <data>

DATA:WAVeform

Syntax

DATA: WAVeform < Vpeak>, < DC Offset>, < data>

Description

Downloads the 32-bit floating point arbitrary waveform data into the U8903A internal waveform memory.

You can download from 32 to 32768 (32K) points per waveform. The data value must be the normalized data between -1 to 1. The values of -1 and +1 correspond to the peak values of the waveform (if the offset is 0 V). For example, if you set the Vpeak to 5 Vp (0 V offset), +1 corresponds to +5 Vp. The <data> parameter is in the IEEE-488.2 binary block program data format.

Parameters

Item	Туре	Range of values	Default value
Vpeak	Numeric	 0 to 22.6 Vp (Balanced output connection) 0 to 11.3 Vp (Unbalanced or Common output connection) 	Required parameter
DC Offset	Numeric	–11.3 V to 11.3 V	Required parameter

Remarks

- Refer to "Appendix G: Using the IEEE-488.2 Binary Block Format" on page 583 for details on the <data> format.
- Refer to "Generating the arbitrary waveform" on page 482 for the arbitrary waveform example.
- The DATA: WAVeform command overwrites the previous waveform data in the U8903A volatile memory.
- Sending the SYSTem:PRESet, *RST, or SYSTem:RESet[:MODE] AGENerator command, or cycling the U8903A power, will delete the downloaded waveform data.

Example

The following command downloads the arbitrary waveform data into the U8903A internal waveform memory.

DATA: WAV 5, 0, <data>

Data Subsystem

DATA:WAVFile

Syntax

DATA: WAVFile <data>

Description

Downloads a Microsoft compatible .wav file to the digital generator buffer. The <data> parameter is in the IEEE-488.2 binary block program data format.

Remarks

- Refer to "Appendix G: Using the IEEE-488.2 Binary Block Format" on page 583 for details on the <data> format.
- The acceptable file type is restricted to WAVE file format (.wav).
- The size of the wave file is limited to 5 MB and the supported data resolution is 8, 16, and 24 bits per sample.
- According to the definition of the wave file format, the PCM data is two's-complement except for resolutions of 1 to 8 bits, which are represented as offset binary. Therefore, for wave file with 8 bits per sample resolution, the data will automatically be converted to two's-complement at the output.
- The wave file applies to both channel 1 and 2 of the digital generator.

Example

The following command downloads the wave file data into the digital generator arbitrary waveform.

DATA: WAVF <data>

DATA:FILTer

Syntax

DATA:FILTer <filter category>, <no. of section>, <no. of group delay>, <data>

Description

Downloads the 32-bit floating point user-defined filter data into the U8903A volatile memory allocated for the user-defined filter coefficients.

NOTE

There is only one memory slot allocated for this function.

The <data> parameter represents the filter coefficients in the IEEE-488.2 binary block program data format, where the minimum number of bytes is 16 and maximum number of bytes is 1024. The maximum number of filter coefficients is 256 with 32-bit for each coefficient.

Parameters

Item	Туре	Range of values	Default value
filter category	Numeric	Infinite Impulse Response (IIR) or Finite Impulse Response (FIR)	Required parameter
no. of section	Numeric	1 to 36	Required parameter
no. of group delay	Numeric	0 to 65535	Required parameter

Remarks

- Refer to "Appendix G: Using the IEEE-488.2 Binary Block Format" on page 583 for details on the <data> format.
- This command must be sent prior to sending the SENSe:FILTer:LPASs CUSTom, SENSe:FILTer:HPASs CUSTom, or SENSe:FILTer:WEIGhting CUSTom.

Data Subsystem

- The DATA: FILTer command overwrites the previous filter data in the U8903A volatile memory.
- The downloaded filter data will remain in the U8903A volatile memory if the CUSTom filter is not changed to any other preset filters for the selected channel.
- Sending the SYSTem:PRESet, *RST, or SYSTem:RESet[:MODE] AANalyzer command, or cycling the U8903A power, will delete the downloaded filter data.
- If the filter type is FIR, the coefficients are arranged in the following manner.

NOTE

The FIR filter transfer function, H(z), is defined as:

$$H(z) = A[0] + A[1]z^{-1} + A[2]z^{-2} + A[3]z^{-3} + ...$$

where z = complex variable

• If the filter type is IIR, the coefficients are arranged in the following manner.

```
Coefficient[5]
                                 //Section 1: B<sub>1</sub>[1]
Coefficient[6]
                                 //Section 1: B_1[2]
Coefficient[0]
                                 //Section 2: Gain<sub>2</sub>
Coefficient[1]
                                 // Section 2: A<sub>2</sub>[0]
Coefficient[2]
                                 // Section 2: A<sub>2</sub>[1]
Coefficient[3]
                                 //Section 2: A<sub>2</sub>[2]
Coefficient[4]
                                 //Section 2: B<sub>2</sub>[0]
Coefficient[5]
                                 // Section 2: B<sub>2</sub>[1]
Coefficient[6]
                                 //Section 2: B<sub>2</sub>[2]
```

where A_x = Denominator and B_x = Numerator

NOTE

The IIR filter transfer function, H(z), is defined as:

$$H(z) = \prod_{x=1}^{N} Gain_{x} \left(\frac{B_{x}[0] + B_{x}[1]z^{-1} + B_{x}[2]z^{-2}}{A_{x}[0] + A_{x}[1]z^{-1} + A_{x}[2]z^{-2}} \right)$$

where z = complex variable, N = number of sections, x = section number

- Each section must contain second-order filter coefficients.
- Refer to "Using the user-defined filter data" on page 493 for the user-defined filter example.

Example

The following command downloads the user-defined FIR low pass filter data into the U8903A volatile memory.

```
DATA: FILT FIR, 1, 0, <data>
```

Data Subsystem

DATA:DIGital:FILTer

Syntax

DATA:DIGital:FILTer <filter category>, <no. of section>, <no. of group delay>, <data>

Description

Downloads the 32-bit floating point user-defined filter data into the U8903A volatile memory allocated for the user-defined filter coefficients.

NOTE

There is only one memory slot allocated for this function.

The <data> parameter represents the filter coefficients in the IEEE-488.2 binary block program data format, where the minimum number of bytes is 16 and maximum number of bytes is 1024. The maximum number of filter coefficients is 256 with 32-bit for each coefficient.

Parameters

Item	Туре	Range of values	Default value
filter category	Numeric	Infinite Impulse Response (IIR) or Finite Impulse Response (FIR)	Required parameter
no. of section	Numeric	1 to 36	Required parameter
no. of group delay	Numeric	0 to 65535	Required parameter

Remarks

 Refer to "Appendix G: Using the IEEE-488.2 Binary Block Format" on page 583 for details on the <data> format. • This command must be sent prior to sending the SENSe:DIGital:FILTer:LPASs CUSTOM, SENSe:DIGital:FILTer:HPASs CUSTOM, SENSe:DIGital:FILTer:WEIGhting CUSTOM, or SENSe:DIGital:FILTer:DEEMphasis CUSTOM.

- The DATA:DIGital:FILTer command overwrites the previous filter data in the U8903A volatile memory.
- The downloaded filter data will remain in the U8903A volatile memory if the CUSTom filter is not changed to any other preset filters for the selected channel.
- Sending the SYSTem: PRESet, *RST, or SYSTem: RESet[:MODE] DANalyzer command, or cycling the U8903A power, will delete the downloaded filter data.
- If the filter type is FIR, the coefficients are arranged in the following manner.

•

NOTE

The FIR filter transfer function, H(z), is defined as:

$$H(z) = A[0] + A[1]z^{-1} + A[2]z^{-2} + A[3]z^{-3} + ...$$

where z = complex variable

• If the filter type is IIR, the coefficients are arranged in the following manner.

Data Subsystem

```
Coefficient[0]
                                //Section 1: Gain<sub>1</sub>
Coefficient[1]
                                //Section 1: A_1[0]
Coefficient[2]
                               // Section 1: A<sub>1</sub>[1]
Coefficient[3]
                                //Section 1: A_1[2]
Coefficient[4]
                                // Section 1: B<sub>1</sub>[0]
Coefficient[5]
                                //Section 1: B<sub>1</sub>[1]
Coefficient[6]
                                //Section 1: B_1[2]
Coefficient[0]
                                //Section 2: Gain<sub>2</sub>
Coefficient[1]
                                //Section 2: A_2[0]
                               // Section 2: A<sub>2</sub>[1]
Coefficient[2]
Coefficient[3]
                                //Section 2: A<sub>2</sub>[2]
Coefficient[4]
                                //Section 2: B<sub>2</sub>[0]
Coefficient[5]
                               // Section 2: B<sub>2</sub>[1]
Coefficient[6]
                               //Section 2: B<sub>2</sub>[2]
```

where A_x = Denominator and B_x = Numerator

NOTE

The IIR filter transfer function, H(z), is defined as:

$$H(z) = \prod_{X=1}^{N} Gain_{X} \left(\frac{B_{X}[0] + B_{X}[1]z^{-1} + B_{X}[2]z^{-2}}{A_{X}[0] + A_{X}[1]z^{-1} + A_{X}[2]z^{-2}} \right)$$

where z = complex variable, N = number of sections, x = section number

• Each section must contain second-order filter coefficients.

Example

The following command downloads the user-defined FIR low pass filter data into the U8903A volatile memory.

DATA:DIG:FILT FIR, 1, 0, <data>

DATA:FILE?

Syntax

DATA: FILE? <filename>, <data>

Description

Uploads a file into the U8903A temporary folder. The <data> parameter is in the IEEE-488.2 binary block program data format. This query is used when a respective file is not accessible by the U8903A and needs to be transferred to the U8903A remotely. The query returns the the file uploading state as 0 if the file uploading is not completed, or 1 if the file uploading is completed successfully.

Parameter

Item	Туре	Range of values	Default value
filename	String	File name in quoted string. For example, "NK_R2.10.1.0.jel"	Required parameter

Remarks

- Refer to "Appendix G: Using the IEEE-488.2 Binary Block Format" on page 583 for details on the <data> format.
- The <data> parameter is the file that needs to be transferred to the U8903A in the binary block data byte format.
- The successfully uploaded file will be stored in the U8903A temporary folder, "\temp\<filename>".
- The time required to complete this query varies according to the file size.

Example

The following command uploads the "NK_R2.10.1.0.jel" file.

DATA:FILE? "NK_R2.10.1.0.jel", <data>

Sweep Subsystem

Sweep Subsystem

The Sweep subsystem provides the commands to select the channel to perform sweep and sweep mode, as well as configure the sweep settings.

SOURce:SWEep:INTerface

Syntax

SOURce: SWEep: INTerface <interface>

SOURce:SWEep:INTerface?

Description

Sets the sweep interface. The query returns the sweep interface type.

Parameter

Item	Туре	Range of values	Default value
interface	Discrete	ANALog or DIGital	ANALOG

Remarks

This command must be sent prior to the other SOURce: SWEep:... commands.

Examples

The following command sets the sweep interface to Digital.

SOUR: SWE: INT DIG

The following query returns the sweep interface type.

SOUR: SWE: INT?

Typical response: DIG

SOURce: SWEep: CHANnel

Syntax

SOURce: SWEep: CHANnel < channel>

SOURce: SWEep: CHANnel?

Description

Sets the channel to perform sweep. The query returns the selected sweep channel.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	1

Remarks

- Only one channel can be swept at a time.
- The sweep channel refers to the generator channel to perform sweep.
- Refer to "Performing sweep" on page 488 for the examples on performing sweep.

NOTE

- The analyzer channel number must be the same as the generator channel number to perform sweep.
- You must not select channel 1 as the sweep channel if the generator function is variable phase, as channel 1 is the reference channel for variable phase.

Examples

The following command sets channel 1 to perform sweep.

SOUR: SWE: CHAN 1

The following query returns the sweep channel.

SOUR: SWE: CHAN?

Typical response: 1

Sweep Subsystem

SOURce:SWEep:REFerence:CHANnel

Syntax

SOURce:SWEep:REFerence:CHANnel <channel>
SOURce:SWEep:REFerence:CHANnel?

Description

Sets the reference channel to perform sweep. The query returns the selected sweep reference channel.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	1

Remarks

The command SOURce: SWEep: INTerface must be sent prior to sending this command.

Examples

The following command sets the analog reference channel to 1.

SOUR: SWE: REF: CHAN 1

The following query returns the reference sweep channel.

SOUR: SWE: REF: CHAN?

Typical response: 1

SOURce:SWEep:MODE

Syntax

SOURce: SWEep: MODE < mode>

SOURce: SWEep: MODE?

Description

Sets the sweep or list mode for the channel specified in the "SOURce:SWEep:CHANnel" command. The query returns the sweep mode of the specified channel.

The description for each <mode> parameter is shown as follows.

ASWeep Auto Sweep

- Sweep is performed automatically.
- Sweep points are based on the Start, Stop, and Step Size sweep parameter settings.

ALIST Auto List

- Sweep is performed automatically.
- Sweep points are predefined and downloaded, or loaded from a file into the U8903A.

MSWeep Manual Sweep

- Sweep is performed manually.
- Sweep points are based on the Start, Stop, and Step Size sweep parameter settings.

MLIST Manual List

- Sweep is performed manually.
- Sweep points are predefined and downloaded, or loaded from a file into the U8903A.

Sweep Subsystem

Parameter

Item	Туре	Range of values	Default value
mode	Discrete	ASWeep, ALISt, MSWeep, or MLISt	ASWeep

Remarks

- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Examples

The following command sets the sweep mode to Auto Sweep.

SOUR: SWE: MODE ASW

The following query returns the sweep mode.

SOUR: SWE: MODE?

Typical response: ASW

SOURce:SWEep:PARameter

Syntax

SOURce: SWEep: PARameter < sweep parameter>

SOURce: SWEep: PARameter?

Description

Sets the parameter to sweep for the channel specified in the "SOURce:SWEep:CHANnel" command. The query returns the sweep parameter of the selected channel.

The description for each <sweep parameter> is shown as follows.

Analog

FREQuency1 Frequency values of the sine, variable

phase, dual, and square waveforms

FREQuency2 Frequency values of the dual waveform

AMPLitude Amplitude values of all waveform types

PHASe Phase value of the variable phase waveform

CENTer Center frequency value of the DFD IEC

60268 waveform

DIFFerence Difference frequency value of the DFD IEC

60268 or DFD IEC 60268 waveform

UPPer Upper frequency value of the DFD IEC

60118, SMPTE 1:1, SMPTE 4:1, or SMPTE

10:1 waveform

LOWer Lower frequency value of the SMPTE 1:1,

SMPTE 4:1, or SMPTE 10:1 waveform

Digital

FREQuency1 Frequency values of the sine, variable

phase, dual, square, sine burst, and stereo

waveforms

FREQuency2 Frequency values of the dual waveform

AMPLitude Amplitude values of all waveform types

except monotonicity, constant value,

walking zero, and walking one

PHASe Phase value of the variable phase waveform

CENTer Center frequency value of the DFD IEC

60268 waveform

DIFFerence Difference frequency value of the DFD IEC

60268 or DFD IEC 60268 waveform

UPPer Upper frequency value of the DFD IEC

60118, SMPTE 1:1, SMPTE 4:1, or SMPTE

10:1 waveform

LOWer Lower frequency value of the SMPTE 1:1,

SMPTE 4:1, or SMPTE 10:1 waveform

Sweep Subsystem

Parameter

Item	Туре	Range of values	Default value
sweep parameter	Discrete	FREQuency1, FREQuency2, AMPLitude, PHASe, CENTer, DIFFerence, UPPer, or LOWer	FREQuency1

Remarks

- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Examples

The following command sets the sweep parameter to the frequency of the sine waveform.

SOUR:SWE:PAR FREQ1

The following query returns the sweep parameter.

SOUR: SWE: PAR?

Typical response: FREQ1

SOURce:SWEep:DWELI

Syntax

SOURce: SWEep: DWELl < delay>

SOURce: SWEep: DWEL1?

Description

Sets the sweep dwell time (ms) for the channel specified in the "SOURce:SWEep:CHANnel" command. The dwell time is the delay between the start of the signal generation and the start of making the measurement. The query returns the dwell time of the selected channel in ms.

Parameter

Item	Туре	Range of values	Default value
delay	Numeric	0 to 5000 ms	0

Remarks

- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Examples

The following command sets the dwell time to 1 s.

SOUR: SWE: DWEL1 1000

The following query returns the dwell time.

SOUR: SWE: DWEL1?

Typical response: 1000

Sweep Subsystem

SOURce:SWEep:SPACing

Syntax

SOURce: SWEep: SPACing < spacing>

SOURce: SWEep: SPACing?

Description

Sets either linear or log interval for the sweep of the channel specified in the "SOURce:SWEep:CHANnel" command. The query returns the sweep spacing of the selected channel in the form of LIN or LOG.

The description for each <spacing> parameter is shown as follows.

LINear The sweep step size will increment or

decrement the sweep point until the sweep

limit is reached.

LOGarithmic For nonlinear sweeps, the step size is

determined by a logarithmic curve fitted between the start and stop frequency. Stepping is determined by the number of

sweep points.

Parameter

Item	Туре	Range of values	Default value
spacing	Discrete	LINear or LOGarithmic	 LINear (for amplitude and phase sweep) LOGarithmic (for frequency sweep)

Remarks

- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Examples

The following command sets the log sweep interval.

SOUR: SWE: SPAC LOG

The following query returns the sweep spacing.

SOUR: SWE: SPAC?

Typical response: LOG

SOURce:SWEep:POINts

Syntax

SOURce:SWEep:POINts <points>

SOURce: SWEep: POINts?

Description

Sets the number of sweep points for the channel specified in the "SOURce:SWEep:CHANnel" command. The query returns the number of sweep points of the selected channel.

The relationship between the number of points and the stop, start, and step size for linear sweep is computed as follows.

$$STEP = (STOP - STARt)/(POINts - 1)$$

The following equation shows the relationship between the number of points and the stop, start, and step size for logarithmic sweep.

 $STOP = (STARt)(STEP)^{POINts - 1}$

Sweep Subsystem

If the number of points changes, the step size will also change, but span will not be affected.

$$(SPAN = STOP - STARt)$$

Parameter

Item	Туре	Range of values	Default value
points	Numeric	Minimum: 2 Maximum: 1024	30

Remarks

- The number of sweep points configuration is not applicable for the Auto List or Manual List sweep mode.
- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Examples

The following command sets the number of sweep points to 20.

SOUR: SWE: POIN 20

The following query returns the number of sweep points.

SOUR: SWE: POIN?

Typical response: 20

SOURce:SWEep:STEP

Syntax

SOURce: SWEep: STEP < step>

SOURce: SWEep: STEP?

Description

Sets the step size of the linear sweep interval, or multiplier factor of the log sweep interval for the channel specified in the "SOURce:SWEep:CHANnel" command. The query returns the step size of the selected channel.

Refer to SOURce: SWEep: POINts for the relationship between the step size and the stop, start, and number of points for linear or logarithmic sweep. The start and stop range of values for each waveform type and sweep parameter are listed in "Appendix F: Sweep Start and Stop Range" on page 582.

Remarks

- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- The multiplier factor for the log interval must not be <0 or equal to 1.
- The unit for the step size of each corresponding sweep parameter is listed as follows. The returned value is also in the unit as listed.

Sweep parameter	Unit for the step size
FREQuency1	Hz
FREQuency2	Hz
AMPLitude	VrmsV (for the DC signal)
PHASe	0

Sweep Subsystem

Sweep parameter	Unit for the step size
CENTer	Hz
DIFFerence	Hz
UPPer	Hz
LOWer	Hz

• Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Examples

The following command sets the step size to 100 Hz. (Assume that frequency is the sweep parameter)

SOUR: SWE: STEP 100

The following query returns the step size.

SOUR: SWE: STEP?

Typical response: 1.000000E+02

SOURce:SWEep:STARt

Syntax

SOURce:SWEep:STARt <start>

SOURce: SWEep: STARt?

Description

Sets the sweep start point for the channel specified in the "SOURce:SWEep:CHANnel" command. The query returns the sweep start point of the specified channel.

Refer to "Appendix F: Sweep Start and Stop Range" on page 582 for the range of the start values for each waveform type and sweep parameter.

Remarks

- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- The unit for the start value of each corresponding sweep parameter is listed as follows. The returned value is also in the unit as listed.

Sweep parameter	Unit for the start value
FREQuency1	Hz
FREQuency2	Hz
AMPLitude	VrmsV (for the DC signal)
PHASe	0
CENTer	Hz
DIFFerence	Hz
UPPer	Hz
LOWer	Hz

• Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Examples

The following command sets the sweep start point to 1 kHz. (Assume that frequency is the sweep parameter)

SOUR:SWE:STAR 1000

The following query returns the start point.

SOUR: SWE: STAR?

Typical response: 1.000000E+03

Sweep Subsystem

SOURce:SWEep:STOP

Syntax

SOURce:SWEep:STOP <stop>

SOURce: SWEep: STOP?

Description

Sets the sweep stop point for the channel specified in the "SOURce:SWEep:CHANnel" command. The query returns the sweep stop point of the specified channel.

Refer to "Appendix F: Sweep Start and Stop Range" on page 582 for the range of the stop values for each waveform type and sweep parameter.

Remarks

- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- The unit for the stop value of each corresponding sweep parameter is listed as follows. The returned value is also in the unit as listed.

Sweep parameter	Unit for the stop value
FREQuency1	Hz
FREQuency2	Hz
AMPLitude	 Vrms V (for the DC signal)
PHASe	0
CENTer	Hz
DIFFerence	Hz
UPPer	Hz
LOWer	Hz

• Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Examples

The following command sets the sweep stop point to 3 kHz. (Assume that frequency is the sweep parameter)

SOUR:SWE:STOP 3000

The following query returns the stop point.

SOUR: SWE: STOP?

Typical response: 3.000000E+03

SOURce:SWEep:NEXT

Syntax

SOURce: SWEep: NEXT

Description

Jumps to the next sweep point in the Manual Sweep or Manual List sweep mode

SOURce: SWEep: VALues?

Syntax

SOURce: SWEep: VALues? (@<channel>)

Description

Returns the values of the sweep points for the specified channel. Multiple responses are separated by commas.

Sweep Subsystem

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	Required parameter

Remarks

- The command "SOURce:SWEep:INTerface" must be sent prior to sending this command.
- You may query the values of the sweep points after sending the INITiate[:IMMediate]:SWEep command to trigger the sweep.
- Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Example

The following query returns the values of the sweep points. (Assume that the sweep start point is 100 Hz, stop point is 1000 Hz, and step size is 100 Hz.)

```
SOUR: SWE: VAL? (@2)
```

Typical response:

1.000000E+03

```
1.000000E+02,2.000000E+02,3.000000E+02,
4.000000E+02,5.000000E+02,6.000000E+02,
7.000000E+02,8.000000E+02,9.000000E+02,
```

SENSe:SWEep:INTerface

Syntax

SENSe: SWEep: INTerface < interface>

SENSe:SWEep:INTerface?

Description

Sets the sweep interface. The query returns the sweep interface type.

Parameter

Item	Туре	Range of values	Default value
interface	Discrete	ANALog or DIGital	ANALOG

Remarks

This command must be sent prior to the other SENSe: SWEep:... commands.

Examples

The following command sets the sweep interface to Digital.

SENS:SWE:INT DIG

The following query returns the sweep interface type.

SENS: SWE: INT?

Typical response: DIG

Sweep Subsystem

SENSe:SWEep:CHANnel

Syntax

SENSe:SWEep:CHANnel <channel>

SENSe:SWEep:CHANnel?

Description

Sets the analyzer channel to perform sweep. The query returns the selected sweep channel.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	1

Remarks

The command SENSe: SWEep: INTerface must be sent prior to sending this command.

Examples

The following command sets channel 1 to perform sweep.

SENS:SWE:CHAN 1

The following query returns the sweep channel.

SENS: SWE: CHAN?

Typical response: 1

SENSe:SWEep:REFerence:CHANnel

Syntax

SENSe:SWEep:REFerence:CHANnel <channel>

SENSe: SWEep: REFerence: CHANnel?

Description

Sets the analyzer reference channel to perform sweep. The query returns the selected sweep reference channel.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	1

Remarks

The command SENSe: SWEep: INTerface must be sent prior to sending this command.

Examples

The following command sets the analog reference channel to 1.

SENS:SWE:REF:CHAN 1

The following query returns the reference sweep channel.

SENS: SWE: REF: CHAN?

Typical response: 1

Trigger Subsystem

Trigger Subsystem

The Trigger subsystem provides the commands to configure the trigger source for the analyzer or graph mode, as well as the graph trigger edge.

TRIGger: ANALyzer: SOURce

Syntax

TRIGger:ANALyzer:SOURce <trigger source>
TRIGger:ANALyzer:SOURce?

Description

Sets the analyzer trigger source for the input signals. The query returns the trigger source in the form of IMM, BUS, or EXT.

The description for each <trigger source> parameter is listed as follows.

IMMediate	Triggers a measurement automatically without waiting for any event to occur.
BUS	Triggers a measurement when the *TRG command is received.
EXTernal	Triggers a measurement when the external signal source connected to the Trigger In connector provides a low-true signal to the U8903A.

Parameter

Item	Туре	Range of values	Default value
trigger source	Discrete	IMMediate, BUS, or EXTernal	IMMediate

Examples

The following command sets the analyzer trigger source to External.

TRIG: ANAL: SOUR EXT

The following query returns the trigger source.

TRIG: ANAL: SOUR?

Typical response: EXT

TRIGger:GRAPh:SOURce

Syntax

TRIGger:GRAPh:SOURce <trigger source>
TRIGger:GRAPh:SOURce?

Description

Sets the graph trigger source for the input signals. The query returns the trigger source in the form of either IMM, EXT, BUS, CH1, or CH2.

The description for each <trigger source> parameter is listed as follows.

IMMediate	Free Run
EXTernal	Triggers from an external source
BUS	Triggers from the internal bus
CH1	Triggers from the channel 1 input
CH2	Triggers from the channel 2 input

Trigger Subsystem

Parameter

Item	Туре	Range of values	Default value
trigger source	Discrete	IMMediate, EXTernal, BUS, CH1, or CH2	IMMediate

Examples

The following command sets the graph trigger source to External.

TRIG:GRAP:SOUR EXT

The following query returns the trigger source.

TRIG: GRAP: SOUR?

Typical response: EXT

TRIGger:GRAPh:SLOPe

Syntax

TRIGger: GRAPh: SLOPe <edge>

TRIGger: GRAPh: SLOPe?

Description

Sets the rising or falling edge of the signal to be triggered. The query returns the trigger edge in the form of POS or NEG.

Parameter

Item	Туре	Range of values	Default value
edge	Discrete	POSitive or NEGative	POSitive

Remark

The trigger edge is only applicable for the graph trigger source of CH1 and CH2, else this setting will be ignored.

Examples

The following command sets the rising edge of the signal.

TRIG:GRAP:SLOP POS

The following query returns the trigger edge.

TRIG: GRAP: SLOP?

Typical response: POS

TRIGger:DIGital:ANALyzer:SOURce

Syntax

TRIGger:DIGital:ANALyzer:SOURce <trigger source>
TRIGger:DIGital:ANALyzer:SOURce?

Description

Sets the digital analyzer trigger source for the input signals. The query returns the trigger source in the form of IMM, BUS, or EXT.

The description for each <trigger source> parameter is listed as follows.

IMMediate Triggers a measurement automatically

without waiting for any event to occur.

BUS Triggers a measurement when the *TRG

command is received.

EXTernal Triggers a measurement when the external

signal source connected to the Trigger In connector provides a low-true signal to the

U8903A.

Trigger Subsystem

Parameter

Item	Туре	Range of values	Default value
trigger source	Discrete	IMMediate, BUS, or EXTernal	IMMediate

Remark

This setting is always synchronous with the analog trigger source setting.

Examples

The following command sets the digital analyzer trigger source to External.

TRIG:DIG:ANAL:SOUR EXT

The following query returns the trigger source.

TRIG: DIG: ANAL: SOUR?

Typical response: EXT

TRIGger:DIGital:GRAPh:SOURce

Syntax

TRIGger:DIGital:GRAPh:SOURce <trigger source>
TRIGger:DIGital:GRAPh:SOURce?

Description

Sets the graph trigger source for the input signals. The query returns the trigger source in the form of either IMM, EXT, BUS, CH1, or CH2.

The description for each <trigger source> parameter is listed as follows.

IMMediate	Free Run
EXTernal	Triggers from an external source
BUS	Triggers from the internal bus
CH1	Triggers from the channel 1 input
CH2	Triggers from the channel 2 input

Parameter

Item	Туре	Range of values	Default value
trigger source	Discrete	IMMediate, EXTernal, BUS, CH1, or CH2	IMMediate

Examples

The following command sets the graph trigger source to External.

TRIG:DIG:GRAP:SOUR EXT

The following query returns the trigger source.

TRIG:DIG:GRAP:SOUR?

Typical response: EXT

Trigger Subsystem

TRIGger:DIGital:GRAPh:SLOPe

Syntax

TRIGger:DIGital:GRAPh:SLOPe <edge>
TRIGger:DIGital:GRAPh:SLOPe?

Description

Sets the rising or falling edge of the signal to be triggered. The query returns the trigger edge in the form of POS or NEG.

Parameter

ltem	Туре	Range of values	Default value
edge	Discrete	POSitive or NEGative	POSitive

Remark

The trigger edge is only applicable for the graph trigger source of CH1 and CH2, else this setting will be ignored.

Examples

The following command sets the rising edge of the signal.

TRIG:DIG:GRAP:SLOP POS

The following query returns the trigger edge.

TRIG:DIG:GRAP:SLOP?

Typical response: POS

Fetch Subsystem

The Fetch subsystem provides the commands to acquire the measurement results for the analyzer, graph, or sweep mode.

FETCh[:SCALar]?

Syntax

FETCh[:SCALar]? <function>, (@<channel list>)

Description

Retrieves the measurement result for the specified measurement function and channel(s). Multiple responses are separated by commas.

The description for each <function> parameter is listed as follows.

FUNC1	Measurement result of the first measurement function
FUNC2	Measurement result of the second measurement function
ALL	Measurement results of the first and second measurement functions

Parameters

Item	Туре	Range of values	Default value
function	Discrete	FUNC1, FUNC2, or ALL	FUNC1
channel list	Numeric	One or more analyzer channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Fetch Subsystem

Remarks

- The data returned by the FETCh? query is the result of the last acquisition trigger. The data is valid until the next INITiate[:IMMediate]:ANALyzer command is sent.
- The FETCh? ALL query returns a sequential data format. For example, the FETCh? ALL, (@1,2) query returns the result of the first measurement function of channel 1, the result of the second measurement function of channel 1, the result of the first measurement function of channel 2, and the result of the second measurement function of channel 2.
- If no measurement has been taken or there is an error occurred when the measurement is being taken for a particular channel, NAN (9.91E+37) will be returned. If there is voltage overload, INF (9.9E+37) will be returned.

NOTE

When FETCh is queried, the measurement result will be returned in the unit as listed in "Appendix B: Units of the Measurement Function Returned Values" on page 571.

Example

The following command sequence is used to measure VDC and VAC at channel 1.

```
SENS:FUNC1 VDC, (@1)
SENS:FUNC2 VAC, (@1)
TRIG:ANAL:SOUR IMM
INIT:ANAL (@1)
FETC? FUNC1, (@1)
Typical response: 8.116441E-02
FETC? FUNC2, (@1)
Typical response: 9.807300E-01
```

FETCh:ARRay?

Syntax

FETCh: ARRay? (@<channel>)

Description

Returns an array of measurement data of the selected channel(s). The returned data is the result of the last acquisition trigger, and in the IEEE-488.2 binary block format. The data is valid until the next INITiate[:IMMediate]:GRAPh command is sent.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	Required parameter

Remarks

- The channel(s) that you have selected to acquire the array of data is based on the channel(s) specified in the INITiate[:IMMediate]:GRAPh command.
- To plot a graph with the array of data, the X-axis points can be calculated using the following equations.
 - If time domain is the graph analysis mode, the X-axis point can be computed as follows.

Point
$$x = x \times \left(\frac{1}{\text{Measurement bandwidth}}\right)$$

where x = 0, 1, 2, ...

• If frequency domain is the graph analysis mode, the X-axis point can be computed as follows.

$$Point \ x = \ \left(\frac{x \times Measurement \ bandwidth}{2 \times [PointCount - 1]}\right)$$

where x = 0, 1, 2, ...

Fetch Subsystem

• The measurement data is returned in the unit dBV if the graph analysis mode is frequency domain (magnitude). The data is returned in the unit radian if the analysis mode is frequency domain (phase). The data is returned in the unit V if the analysis mode is time domain.

Example

The following command sequence is used to acquire an array of measurement data for channel 1 in the graph mode.

```
TRIG:GRAP:SOUR IMM
INIT:GRAP (@1)
FETC:ARR? (@1)
```

FETCh:SWEep?

Syntax

```
FETCh:SWEep? <function> (@<channel>)
```

Description

Returns the sweep result for the specified measurement function and channel. Multiple responses are separated by commas.

Parameters

Item	Туре	Range of values	Default value
function	Discrete	FUNC1, FUNC2, or ALL	FUNC1
channel	Numeric	1 or 2	Required parameter

Remarks

• The "INITiate[:IMMediate]:SWEep" command must be used to initiate the sweep prior to sending the FETCh:SWEep? query.

- The specified channel must be one of the channels specified in the "SENSe:SWEep:CHANnel" command.
- The sweep result for the Vac or THD+N Level measurement function is returned in the unit dBV if the CALCulate:FORMat:LEVel is set to OFF.
- The sweep result for the THD+N Ratio, SINAD, SNR, SMPTE IMD, DFD IEC 60118/60268, or crosstalk measurement function is returned in the unit dB if CALCulate:FORMat:RATio is set to OFF.
- The sweep result for the Vdc measurement function is returned in the unit V if the CALCulate:FORMat:LEVel is set to OFF.
- The sweep result for the phase measurement function is returned in degrees.
- Refer to "Performing sweep" on page 488 for the examples on performing sweep.

Example

The following command sequence is used to obtain the sweep result function 1 for channel 1.

```
SOUR: SWE: CHAN 1
INIT: SWE

FETC: SWE? FUNC1, (@1)

Typical response:
7.800041E+04,7.800030E+04,7.377602E+04,
6.919201E+04,6.850725E+04,6.282951E+04,
6.018090E+04,5.758000E+04,5.519361E+04,...
```

FETCh:DIGital[:SCALar]?

Syntax

FETCh:DIGital[:SCALar]? <function>,
 (@<channel list>)

Description

Retrieves the measurement result for the specified measurement function and channel(s). Multiple responses are separated by commas.

The description for each <function> parameter is listed as follows.

FUNC1	Measurement result of the first measurement function
FUNC2	Measurement result of the second measurement function
ALL	Measurement results of the first and second measurement functions

Parameters

Item	Туре	Range of values	Default value
function	Discrete	FUNC1, FUNC2, or ALL	FUNC1
channel list	Discrete	One or more analyzer channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

• The data returned by the FETCh: DIGital? query is the result of the last acquisition trigger. The data is valid until the next

INITiate[:IMMediate]:DIGital:ANALyzer command
is sent.

- The FETCh:DIGital? ALL query returns a sequential data format. For example, the FETCh:DIGital? ALL, (@1,2) query returns the result of the first measurement function of channel 1, the result of the second measurement function of channel 1, the result of the first measurement function of channel 2, and the result of the second measurement function of channel 2.
- If no measurement has been taken or there is an error occurred when the measurement is being taken for a particular channel, NAN (9.91E+37) will be returned. If there is voltage overload, INF (9.9E+37) will be returned.

NOTE

When FETCh is queried, the measurement result will be returned in the unit as listed in "Appendix B: Units of the Measurement Function Returned Values" on page 571.

Example

The following command sequence is used to measure VDC and VAC at digital channel 1.

```
SENS:DIG:FUNC1 VDC, (@D1)
SENS:DIG:FUNC2 VAC, (@D1)
INIT:DIG:ANAL (@D1)
FETC:DIG? FUNC1, (@D1)
Typical response: 8.116441E-02
FETC:DIG? FUNC2, (@D1)
Typical response: 9.807300E-01
```

FETCh:DIGital:AUDio:BITS?

Syntax

```
FETCh:DIGital:AUDIO:BITS? <bit type>,
  (@<channel list>)
```

Description

Queries the data bits or active bits of the embedded data in the digital signal audio word for each subframe. The two subframes correspond to channel 1 and 2.

Parameters

Item	Туре	Range of values	Default value
bit type	Discrete	DATA or ACTive	DATA
channel list	Discrete	(@D1) or (@D2)	Required parameter

Examples

The following query returns the data bits for channel 1.

```
FETC:DIG:AUD:BITS? DATA, (@D1)
```

FETCh:DIGital:ERRor:FLAG?

Syntax

```
FETCh:DIGital:ERRor:FLAG? <error flag>[,<error
flag>[,<error flag>...]]
```

Description

Queries the error flag(s) of the embedded audio data. The returned data is in Boolean. Multiple error flags and responses are separated by commas.

CONFidence Confidence bit. Updated on sub-frame boundaries.

0 - No error

1 - Confidence error. The input data stream may be near error condition due to jitter degradation.

CODing Bi-phase coding error bit. Updated on sub-frame boundaries.

0 - No error.

1 - Bi-phase error. This indicates an error in the received bi-phase coding.

LOCK Receiver lock status when sourced by an incoming AES3-compatible data. Updated on CS block.

boundaries.

0 - Receiver locked

1 - Receiver out of lock

Parity bit. Updated on sub-frame boundaries.

0 - No error

1 - Parity error

VALidity Received AES3 Validity bit status. Updated on sub-frame boundaries.

0 - Data is valid and is normally linear coded PCM audio

1 - Data is invalid, or may be valid compressed audio

Fetch Subsystem

CCRC Channel Status Block Cyclic Redundancy
Check bit. Updated on CS block
boundaries, valid only in Pro mode.

0 - No error

1 - Error

QCRC Q-subcode data CRC error indicator.
Updated on Q-subcode block boundaries.

0 - No error

1 - Error

Parameter

ltem	Туре	Range of values	Default value
error flag	Discrete	CONFidence, CODing, LOCK, VALidity, PARity, CCRC, or QCRC	VALidity

Examples

The following query returns the Confidence and Parity bit error status.

FETC:DIG:ERR:FLAG? CONF, PAR

Typical response: 0,1

FETCh:DIGital:DELay?

Syntax

FETCh:DIGital:DELay?

Description

Queries the time delay between the digital input and output in seconds.

Examples

The following query returns the time delay.

FETC:DIG:DEL?

FETCh:DIGital:BERT?

Syntax

FETCh:DIGital:BERT? <type>, (@<channel list>)

Description

Queries the total bits, total errors, or bit error rate in the Bit Error Rate Test (BERT). The returned data is in string.

TBITs Total bits

ERRors Total errors

BER Bit error ratio

Parameters

Item	Туре	Range of values	Default value
type	Discrete	TBITs, ERRors, or BER	BER
channel list	Discrete	One or more analyzer channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Examples

The following query returns the total errors in BERT.

FETC:DIG:BERT? ERR, (@D1)

Typical response: "3.000000E+00"

FETCh:DIGital:ARRay?

Syntax

FETCh:DIGital:ARRay? (@<channel>)

Description

Returns an array of measurement data of the selected channel(s). The returned data is the result of the last acquisition trigger, and in the IEEE-488.2 binary block format. The data is valid until the next INITiate[:IMMediate]:DIGital:GRAPh command is sent.

Parameter

Item	Туре	Range of values	Default value
channel	Numeric	1 or 2	Required parameter

Remarks

- The channel(s) that you have selected to acquire the array of data is based on the channel(s) specified in the INITiate[:IMMediate]:DIGital:GRAPh command.
- To plot a graph with the array of data, the X-axis points can be calculated using the following equations.
 - If time domain is the graph analysis mode, the X-axis point can be computed as follows.

$$Point \ x = x \times \quad \left(\frac{1}{\textit{Measurement bandwidth}}\right)$$

where x = 0, 1, 2, ...

• If frequency domain is the graph analysis mode, the X-axis point can be computed as follows.

$$Point \ x = \ \left(\frac{x \times Measurement \ bandwidth}{2 \times [PointCount - 1]}\right)$$

where x = 0, 1, 2, ...

• The measurement data is returned in the unit dBV if the graph analysis mode is frequency domain (magnitude). The data is returned in the unit radian if the analysis mode is frequency domain (phase). The data is returned in the unit V if the analysis mode is time domain.

Example

The following command sequence is used to acquire an array of measurement data for channel 1 in the graph mode.

TRIG:DIG:GRAP:SOUR IMM

INIT:DIG:GRAP (@1)

FETC:DIG:ARR? (@1)

Initiate Subsystem

The Initiate subsystem provides the commands to initiate the sweep as well as the analyzer measurement and graph trigger systems.

INITiate[:IMMediate]:ANALyzer

Syntax

INITiate[:IMMediate]:ANALyzer (@<channel list>)

Description

Initiates the analyzer measurement trigger system for the specified channel(s). When a measurement trigger system is initiated, an event on a selected trigger source causes the specified triggering action to occur. If the trigger system is not initiated, all triggers are ignored.

Parameter

Item	Туре	Range of values	Default value
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This is an overlapped command.
- It takes a few milliseconds for the U8903A to be ready to acquire a trigger signal after receiving this command.

- If the analyzer trigger source is set to Immediate, sending this command will cause the U8903A to take the measurement directly. If the trigger source is set to External, sending this command will cause the U8903A to start taking the measurement when the external signal is received. If the trigger source is set to Bus, sending this command will put the U8903A in the 'waiting for trigger' state until the *TRG command is sent. The U8903A will only start to take the measurement when the *TRG command is received.
- You can verify whether a measurement has completed by polling the status register value via the STATus:OPERation:CONDition? query. While a measurement is in progress, bit 4 of the condition register of the Standard Operation register group will be set. After the measurement has completed, bit 4 will be cleared to 0.

Example

The following command initiates the measurement trigger system on channel 1.

INIT: ANAL (@1)

INITiate[:IMMediate]:GRAPh

Syntax

INITiate[:IMMediate]:GRAPh (@<channel list>)

Description

Initiates the graph trigger system for an array of data for the specified channel(s). When a graph trigger system is initiated, an event on a selected trigger source causes the specified triggering action to occur. If the trigger system is not initiated, all triggers are ignored.

Initiate Subsystem

Parameter

Item	Туре	Range of values	Default value
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This is an overlapped command.
- It takes a few milliseconds for the U8903A to be ready to acquire a trigger signal after receiving this command.
- You can verify whether a measurement has completed by polling the status register value via the STATus:OPERation:CONDition? query. While a measurement is in progress, bit 4 of the condition register of the Standard Operation register group will be set. After the measurement has completed, bit 4 will be cleared to 0.

Example

The following command initiates the graph trigger system on channel 1 to acquire an array of graph points.

INIT: GRAP (@1)

INITiate[:IMMediate]:SWEep

Syntax

INITiate[:IMMediate]:SWEep

Description

Initiates the sweep for the channel specified in the SOURce: SWEep: CHANnel command.

NOTE

Do not perform other operations while sweep is in progress as doing so might cause unexpected results.

Remarks

- This is an overlapped command.
- The Sweep bit at the condition register of the Standard Operation register group will be set if the sweep mode is Auto Sweep or Auto List to indicate the automatic sweep is in progress, when sweep is initiated using this command. The Sweep bit is cleared when the automatic sweep has completed.

Example

The following command initiates the sweep.

INIT: SWE

INITiate[:IMMediate]:DIGital:ANALyzer

Syntax

```
INITiate[:IMMediate]:DIGital:ANALyzer
(@<channel list>)
```

Description

Initiates the digital analyzer measurement trigger system for the specified channel(s). When a measurement trigger system is initiated, an event on a selected trigger source causes the specified triggering action to occur. If the trigger system is not initiated, all triggers are ignored.

Initiate Subsystem

Parameter

Item	Туре	Range of values	Default value
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This is an overlapped command.
- It takes a few milliseconds for the U8903A to be ready to acquire a trigger signal after receiving this command.
- If the digital analyzer trigger source is set to Immediate, sending this command will cause the U8903A to take the measurement directly. If the trigger source is set to External, sending this command will cause the U8903A to start taking the measurement when the external signal is received. If the trigger source is set to Bus, sending this command will put the U8903A in the 'waiting for trigger' state until the *TRG command is sent. The U8903A will only start to take the measurement when the *TRG command is received.
- You can verify whether a measurement has completed by polling the status register value via the STATus:OPERation:CONDition? query. While a measurement is in progress, bit 2 of the condition register of the Standard Operation register group will be set. After the measurement has completed, bit 2 will be cleared to 0.

Example

The following command initiates the measurement trigger system on channel 1.

INIT:DIG:ANAL (@D1)

INITiate[:IMMediate]:DIGital:AUDio:BITS

Syntax

INITiate[:IMMediate]:DIGital:AUDio:BITS
(@<channel list>)

Description

Initiates the digital analyzer audio bits measurement for the specified channel(s).

Parameter

Item	Туре	Range of values	Default value
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This is an overlapped command.
- This command is not applicable for the bus trigger source.

Example

The following command initiates the audio bits measurement on channel 1.

INIT:DIG:AUD:BITS (@D1)

INITiate[:IMMediate]:DIGital:BERT

Syntax

INITiate[:IMMediate]:DIGital:BERT

Description

Starts the Bit Error Rate Test (BERT).

Remarks

This command is only applicable when the digital analyzer trigger source is set to immediate.

Example

The following command starts the BERT.

INIT:DIG:BERT

INITiate[:IMMediate]:DIGital:GRAPh

Syntax

```
INITiate[:IMMediate]:DIGital:GRAPh
(@<channel list>)
```

Description

Initiates the graph trigger system for an array of data for the specified channel(s). When a graph trigger system is initiated, an event on a selected trigger source causes the specified triggering action to occur. If the trigger system is not initiated, all triggers are ignored.

Parameter

Item	Туре	Range of values	Default value
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This is an overlapped command.
- It takes a few milliseconds for the U8903A to be ready to acquire a trigger signal after receiving this command.
- You can verify whether a measurement has completed by polling the status register value via the STATus:OPERation:CONDition? query. While a measurement is in progress, bit 4 of the condition register of the Standard Operation register group will be set. After the measurement has completed, bit 4 will be cleared to 0.

Example

The following command initiates the graph trigger system on channel 1 to acquire an array of graph points.

INIT:DIG:GRAP (@D1)

INITiate:CONTinue:ANALyzer

Syntax

```
INITiate:CONTinue:ANALyzer <state>,
  (@<channel list>)
INITiate:CONTinue:ANALyzer? (@<channel list>)
```

Description

Enables or disables the analyzer to make continuous measurement.

Parameters

Name	Туре	Range of values	Default value
state	Bool	OFF(0) or ON(1)	OFF
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter

Remarks

- This command cannot be sent when the analyzer trigger source is external. However, bus trigger source will not be affected with this command.
- You can obtain the measurement result in continuous measurement with the "FETCh[:SCALar]?" command.
- This command can be stopped by sending the "INITiate[:IMMediate]:ANALyzer" command.

Example

The following command enables the analyzer channel 1 to make continuous measurement.

```
INIT: CONT: ANAL ON, (@1)
```

The following query returns the analyzer channel 1 continuous measurement state.

INIT:CONT:ANAL? (@1)

Typical response: 1

INITiate:CONTinue:DIGital:ANALyzer

Syntax

INITiate:CONTinue:DIGital:ANALyzer <state>,
(@<channel list>)

Description

Enables or disables the digital analyzer to make continuous measurement.

Parameters

Name	Туре	Range of values	Default value
state	Bool	OFF(0) or ON(1)	OFF
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This command cannot be sent when the analyzer trigger source is external. However, bus trigger source will not be affected with this command.
- You can obtain the measurement result in continuous measurement with the "FETCh:DIGital[:SCALar]?" command.

Initiate Subsystem

• This command can be stopped by sending the "INITiate[:IMMediate]:DIGital:ANALyzer" command.

Example

The following command enables the digital analyzer channel 1 to make continuous measurement.

INIT:CONT:DIG:ANAL ON, (@D1)

INITiate:CONTinue:DIGital:AUDio:BITS

Syntax

INITiate:CONTinue:DIGital:AUDio:BITS <state>,
(@<channel list>)

Description

Enables or disables the digital analyzer to make continuous audio bits measurement.

Parameters

Name	Туре	Range of values	Default value
state	Bool	OFF(0) or ON(1)	OFF
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Remarks

- This command cannot be sent when the analyzer trigger source is external. However, bus trigger source will not be affected with this command.
- You can obtain the measurement result in continuous measurement with the "FETCh:DIGital:AUDio:BITS?" command.
- This command can be stopped by sending the "INITiate[:IMMediate]:DIGital:AUDio:BITS" command.

Example

The following command enables the digital analyzer channel 1 to make continuous audio bits measurement.

```
INIT:CONT:DIG:AUD:BITS ON, (@D1)
```

INITiate:CONTinue:DIGital:DELay

Syntax

```
INITiate:CONTinue:DIGital:DELay <state>
```

Description

Starts or Stops the digital analyzer to make time delay measurement. Time delay measurement is done by measuring the delay time from the digital input with reference to the digital output. This measurement measures the time delay introduced by the Device Under Test (DUT).

Initiate Subsystem

Parameter

Name	Туре	Range of values	Default value
state	Bool	OFF(0) or ON(1)	OFF

Remarks

- This command is only applicable when the analyzer trigger source is set to immediate.
- You can obtain the measurement result in continuous measurement with the "FETCh:DIGital:DELay?" command.
- In order to perform this test, the digital generator must be set to output the signal.
- The delay measurement is only applicable for AES3/SPDIF interface.

Example

The following command starts a time delay measurement.

INIT: CONT: DIG: DEL ON

The time delay measurement result can be obtained continuously with the following command.

FETC:DIG:DEL?

Abort Subsystem

The Abort subsystem is used to cancel any triggered actions.

ABORt:ANALyzer

Syntax

ABORt: ANALyzer

Description

Cancels any initiated analyzer measurement trigger and returns the trigger state to Idle.

Remark

This command will abort all the initiated triggered channels.

Example

The following command aborts the initiated analyzer measurement trigger.

ABOR: ANAL

ABORt: GRAPh

Syntax

ABORt: GRAPh

Description

Cancels any initiated measurement trigger for an array of graph points and returns the trigger state to Idle.

Abort Subsystem

Remark

This command will abort all the initiated triggered channels.

Example

The following command aborts the initiated measurement trigger for the graph points.

ABOR: GRAP

ABORt:SWEep

Syntax

ABORt: SWEep

Description

Cancels any initiated measurement trigger for sweep and returns the trigger state to Idle.

Remark

This command will abort all the initiated triggered channels.

Example

The following command aborts the initiated measurement trigger for sweep.

ABOR: SWE

ABORt:DIGital:ANALyzer

Syntax

ABORt:DIGital:ANALyzer

Description

Cancels any initiated digital analyzer measurement trigger and returns the trigger state to Idle.

Remark

This command will abort all the initiated triggered channels.

Example

The following command aborts the initiated analyzer measurement trigger.

ABOR: DIG: ANAL

ABORt:DIGital:GRAPh

Syntax

ABORt:DIGital:GRAPh

Description

Cancels any initiated array of graph points measurement trigger and returns the trigger state to Idle.

Remark

This command will abort all the initiated triggered channels.

Example

The following command aborts the initiated analyzer measurement trigger.

ABOR: DIG: GRAP

Abort Subsystem

ABORt:DIGital:BERT

Syntax

ABORt:DIGital:BERT

Description

Stops the Bit Error Rate Test (BERT).

Example

The following command stops the initiated BERT.

ABOR: DIG: BERT

Mass Memory Subsystem

The Mass Memory subsystem provides the commands to perform file maintenance and also set the U8903A power-up state.

MMEMory:LOAD

Syntax

MMEMory:LOAD <label>, <filename>

Description

Loads the 32-bit floating point data from a file into the U8903A. The <filename> parameter is a quoted string and the <label> parameter refers to an identifier for the data type to be recalled.

Parameters

Item	Туре	Range of values	Default value
label	Discrete	FILTer, WAVeform, SWEep, or DFILter	Required parameter
filename	String	Full file path in quoted string. For example: "\Storage 1\filter1.juf"	Required parameter

Remarks

• The file extension type for each <label> parameter is listed below.

FILTer	.juf
WAVeform	.arb
SWEep	.csv
DETLter	inf

Mass Memory Subsystem

• The folders in the U8903A internal storage to store the data are listed as follows.

Data	Folder
Filter data	Filter
Arbitrary waveform data	Waveform
Sweep list values	Sweep

- For the external USB flash storage, the file path must begin with "\Storage 1\".
- The arbitrary waveform data file (.arb) is only applicable for the analog generator.
- For sweep, the SOURce: SWEep: CHANnel command must be sent prior to sending the MMEMemory: LOAD SWEep, <filename> command.
- When you send the MMEMemory:LOAD SWEep, <filename> command, the custom sweep points in the file will be loaded into the U8903A based on the source sweep channel set in the SOURCE:SWEEp:CHANnel command. The sweep mode will also be set to Automatic List or Manual list, depending on the previous sweep mode.

Examples

The following command loads the filter data into the U8903A from the "filter1.juf" file in the U8903A internal storage.

```
MMEM:LOAD FILT, "\Filter\filter1.juf"
```

The following command loads the arbitrary waveform data into the U8903A from the "waveform1.arb" file in your USB external flash storage.

```
MMEM:LOAD WAV, "\Storage 1\waveform1.arb"
```

The following command loads the sweep list values into the U8903A from the "mySweep.csv" file in the U8903A internal storage.

Mass Memory Subsystem

1

MMEM:LOAD SWE, "\Sweep\mySweep.csv"

MMEMory:STORe

Syntax

MMEMory:STORe < label>, < filename>

Description

Stores the 32-bit floating point data to a file in either the U8903A internal storage or an external USB flash storage. The <filename> parameter is a quoted string and the <label> parameter refers to an identifier for the data type to be saved.

Parameters

Item	Туре	Range of values	Default value
label	Discrete	FILTer, WAVeform, or DFILter	Required parameter
filename	String	Full file path in quoted string. For example: "\Storage 1\filter1.juf"	Required parameter

Remarks

 The file extension type for each <label> parameter is listed below.

FILTer .juf
WAVeform .arb
DFILter .juf

• The folders in the U8903A internal storage to store the data are listed as follows.

Data	Folder
Filter data	Filter
Arbitrary waveform data	Waveform

- For the external USB flash storage, the file path must begin with "\Storage 1\".
- The arbitrary waveform data file (.arb) is only applicable for analog generator.

Examples

The following command stores the filter data in the "filter1.juf" file into the U8903A internal storage.

```
MMEM:STOR FILT, "\Filter\filter1.juf"
```

The following command stores the arbitrary waveform data in the "waveform1.arb" file into your external USB flash storage.

MMEM:STOR WAV, "\Storage 1\waveform1.arb"

MMEMory: CATalog?

Syntax

MMEMory: CATalog? <location>, <directory>

Description

Returns the memory usage information (total amount of storage currently used and free space available) in bytes and a list of files and directories in a specified parent directory. The specified parent directory can reside in the U8903A internal memory or an external USB flash storage. Multiple responses are separated by commas.

The response is in the following format:

```
<used_bytes_in_this_directory>,<free_bytes_on_this_disk>,
```

"<file_name>,<file_type>,<filesize_in_bytes>", ...

[&]quot;<file_name>,<file_type>,<filesize_in_bytes>",

Mass Memory Subsystem

Parameters

Item	Туре	Range of values	Default value
location	Discrete	INTernal or EXTernal	Required parameter
directory	String	The desired parent directory	Required parameter

Remark

INTernal indicates the U8903A internal memory and EXTernal indicates an external USB flash storage.

Examples

To query the existing files in the 'Filter' folder in the U8903A internal memory.

MMEM:CAT? INT, "\Filter"

To query the existing files in an external USB flash storage.

MMEM:CAT? EXT, "\Storage 1"

MMEMory:DELete

Syntax

MMEMory:DELete <location>, <directory>,
<filename>

Description

Deletes the specified file in the selected directory.

Parameters

Item	Туре	Range of values	Default value
location	Discrete	INTernal or EXTernal	Required parameter
directory	String	The directory of the desired folder.	Required parameter
filename	String	Can be any letters (A to Z), numbers (0 to 9) or underscore character ("_"). Blank spaces are not allowed.	Required parameter

Remarks

- INTernal indicates the U8903A internal memory and EXTernal indicates an external USB flash storage.
- The specified file must reside in the selected folder, otherwise an error will be generated. You can verify whether the file is available in the 'Filter' folder in the U8903A internal memory using the MMEMory:CATalog? INTernal, "\Filter" command.

Examples

The following command deletes a file named 'MyFilter.juf' in the '\Filter' directory of the U8903A internal memory.

```
MMEM: DEL INT, "\Filter", "MyFilter.juf"
```

The following command deletes a file named 'MyFilter.juf' in the '\Storage 1' directory of an external USB flash storage.

```
MMEM:DEL EXT, "\Storage 1", "MyFilter.juf"
```

MMEMory:LOAD:WAVFile

Syntax

MMEMory:LOAD:WAVFile <filename>

Description

Loads a Microsoft compatible .wav file to the digital generator buffer. The <filename> parameter is a quoted string.

Parameter

ltem	Туре	Range of values	Default value
filename	String	Full file path in quoted string. For example:	Required parameter
		External storage "\Storage 1\sine.wav"Internal storage "\waveform\sine.wav"	

Remarks

- The acceptable file type is restricted to WAVE file format (.wav).
- For the internal memory, the file path must begin with "\waveform\".
- For the external USB flash storage, the file path must begin with "\Storage 1\".
- The wave file applies to both channel 1 and 2 of the digital generator.
- The size of the wave file is limited to 5 MB and the supported data resolution is 8, 16, and 24 bits per sample.

• According to the definition of the wave file format, the PCM data is two's-complement except for resolutions of 1 to 8 bits, which are represented as offset binary. Therefore, for wave file with 8 bits per sample resolution, the data will automatically be converted to two's-complement at the output.

Examples

The following command loads the "sine.wav" file in the U8903A internal memory into the digital generator buffer.

MMEM:LOAD:WAVF "\waveform\sine.wav"

The following command loads the "sine.wav" file in the external USB flash storage into the digital generator buffer.

MMEM:LOAD:WAVF "\Storage 1\sine.wav"

MMEMory:LOAD:AES:STATus

Syntax

MMEMory:LOAD:AES:STATus <filename>

Description

Loads the channel status and user bits information for digital generator from a file. The <filename> parameter is a quoted string.

Parameter

Item	Туре	Range of values	Default value
filename	String	Full file path in quoted string. For example:	Required parameter
		 External storage "\Storage 1\GenStatusInfo.dsb" Internal storage "\state\GenStatusInfo.dsb" 	

Mass Memory Subsystem

Remarks

- For the internal storage, the file path must begin with "\state\".
- For the external USB flash storage, the file path must begin with "\Storage 1\".
- The channel status and user bits information apply only to indicated channel in the file.

Examples

The following command loads the channel status and user bits information for digital generator from the "GenStatusInfo.dsb" file in the U8903A internal storage.

```
MMEM:LOAD:AES:STAT "\state\GenStatusInfo.dsb"
```

The following command loads the channel status and user bits information for digital generator from the "GenStatusInfo.dsb" file in the external USB flash storage.

MMEM:LOAD:WAVF "\Storage 1\GenStatusInfo.dsb"

MMEMory:STORe:AES:STATus

Syntax

```
MMEMory:STORe:AES:STATus <module>, <file
format>, <filename>, (@<channel list>)
```

Description

Stores the channel status and user bits information of the digital generator or analyzer to a file. The <filename> parameter is a quoted string.

Parameters

ltem	Туре	Range of values	Default value	
module	Discrete	DGENerator or DANalyzer	DGENerator	
file format	Discrete	HEX or XML	HEX	
filename	String	Full file path in quoted string. For example: External storage "\Storage 1\GenStatusInfo.dsb" Internal storage "\state\GenStatusInfo.dsb"	Required parameter	
channel list	Discrete	One or more channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter	

Remarks

- For the internal storage, the file path must begin with "\state\".
- For the external USB flash storage, the file path must begin with "\Storage 1\".

Examples

The following command stores the channel status and user bits information for digital generator channel 1 to the HEX format to the "GenStatusInfo.dsb" file in the U8903A internal storage.

```
MMEM:STOR:AES:STAT DGEN, HEX, "\state\
GenStatusInfo.dsb", (@D1)
```

The following command stores the channel status and user bits information for digital analyzer channel 2 to the XML format to the "AnaStatusInfo.dsb" file in the external USB flash storage.

```
MMEM:STOR:AES:STAT DAN, XML, "\Storage 1\
AnaStatusInfo.dsb", (@D2)
```

Mass Memory Subsystem

MMEMory:LOAD:STATe:PUP

Syntax

MMEMory:LOAD:STATe:PUP <power-up state>

MMEMory:LOAD:STATe:PUP?

Description

Sets the power-up state of the U8903A. Select LAST to load the last settings of the U8903A, which are the settings before the U8903A was turned off. Select DEFault to load the default settings of the U8903A. The query returns the U8903A power-up state in the form of LAST or DEF.

Parameter

Item	Туре	Range of values	Default value
power-up state	Discrete	DEFault or LAST	DEFault

Examples

The following command loads the U8903A last settings upon power up.

MMEM:LOAD:STAT:PUP LAST

The following query returns the power-up state of the U8903A.

MMEM:LOAD:STAT:PUP?

Typical response: LAST

MMEMory:STORe:SWEep

Syntax

MMEMory:STORe:SWEep <channel>, <function>,
<filename>

Description

Stores the measured sweep data points from memory to a file. The <channel> parameter refers to the measured channel used in the sweep process. The <function> parameter refers to the particular measurement function used in the sweep process. The <filename> parameter is a quoted string.

Parameters

ltem	Туре	Range of values	Default value
channel	Numeric	1 or 2	1
function	Discrete	FUNC1 or FUNC2	
filename	String	Full file path in quoted string. For example:	Required parameter
		External storage "\Storage 1\mysweep.csv"Internal storage "\state\mysweep.csv"	

Remarks

- For the internal storage, the file path must begin with "\state\".
- For the external USB flash storage, the file path must begin with "\Storage 1\".

Mass Memory Subsystem

Examples

The following command stores the measured sweep data points of function 2 in channel 2 to the "Sweep_CH2_F2.csv" file in the U8903A external storage.

```
MMEM:STOR:SWE 2, FUNC2, "\Storage 1\
Sweep_CH2_F2.csv"
```

MMEMory:LOAD:STATe[:MODE]

Syntax

```
MMEMory:LOAD:STATe[:MODE] <location>,
<system mode>, <filename>
```

Description

Loads the specified state file to the selected U8903A mode. The <filename> parameter is a quoted string and the <location> parameter refers to the storage location of the state file. The <system mode> parameter refers to the U8903A mode of either analog analyzer, digital analyzer, analog generator, digital generator, sweep, or graph.

Parameters

Item	Туре	Range of values	Default value
location	Discrete	INTernal or EXTernal	Required parameter
system mode	Discrete	AANalyzer, DANalyzer, AGENerator, DGENerator, SWEep, or GRAPh	Required parameter
filename	String	Full file path in quoted string for the external storage. For example: "\Storage 1\GenState1.gen"	Required parameter
		For the internal storage, only the file name and extension are required. For example: "GenState1.gen"	

Remarks

- INTernal indicates the U8903A internal memory and EXTernal indicates an external USB flash storage.
- If the specified state file is located in the internal storage, only the file name and extension are required. However, if the specified state file is located in the external USB flash storage, the file directory must be stated in full, else an error will be generated.
- An error will be generated if the state file to be loaded is not a <system mode> parameter.

Examples

The following command loads a generator mode state file named 'GenState1.gen' from the U8903A internal memory to the generator.

```
MMEM:LOAD:STAT INT, AGEN, "GenState1.gen"
```

The following command loads the analyzer mode state file named 'AnaState2.ana' in the root directory from the external USB flash storage to the analyzer.

```
MMEM:LOAD:STAT EXT, AAN, "\Storage 1\
AnaState2.ana"
```

MMEMory:LOAD:STATe:CHANnel

Syntax

MMEMory:LOAD:STATe:CHANnel <location>,
<system mode>, (@<channel list>), <filename>

Description

Loads the specified single channel state file to the selected U8903A mode channel. The <filename> parameter is a quoted string and the <location> parameter refers to the storage location of the state file. The <system mode> parameter refers to the U8903A mode of either analog analyzer, digital analyzer, or analog generator.

Parameters

Item	Туре	Range of values	Default value
location	Discrete	INTernal or EXTernal	Required parameter
system mode	Discrete	AANalyzer, DANalyzer, or AGENerator	Required parameter
channel list	Numeric	One or more channels. • (@1) or (@2) for single channel • (@1,2) for channel 1 and 2	Required parameter
filename	String	Full file path in quoted string for the external storage. For example: "\Storage 1\GenCh1State.gen"	Required parameter
		For the internal storage, only the file name and extension are required. For example: "GenCh1State.gen"	

Remarks

- INTernal indicates the U8903A internal memory and EXTernal indicates an external USB flash storage.
- If the specified state file is located in the internal storage, only the file name and extension are required. However, if the specified state file is located in an external USB flash storage, the file directory must be stated in full, else an error will be generated.
- The file to be loaded must be a single channel state file and included in the <system mode> parameter list.
- This command is not applicable for the digital generator, sweep, and graph mode.

Examples

The following command loads a single channel state file named 'GenCh1State.gen' from the U8903A internal memory to the analog generator channel 1.

```
MMEM:LOAD:STAT:CHAN INT, AGEN, (@1),
"GenCh1State.gen"
```

The following command loads a single channel state file named 'AnaCh1State.ana' in the root directory from the external USB flash storage to the analog analyzer channel 1 and 2.

```
MMEM:LOAD:STAT:CHAN EXT, AAN, (@1,2),
"\Storage 1\AnaCh1State.ana"
```

MMEMory:STORe:STATe[:MODE]

Syntax

MMEMory:STORe:STATe[:MODE] <location>,
<system mode>, <filename>

Description

Stores the current U8903A state to a file in either the internal storage or an external USB flash storage. The <filename> parameter is a quoted string and the <location> parameter refers to the storage location of the state file. The <system mode> parameter refers to the U8903A mode of either analog analyzer, digital analyzer, analog generator, digital generator, sweep, or graph.

Parameters

Item	Туре	Range of values	Default value
location	Discrete	INTernal or EXTernal	Required parameter
system mode	Discrete	AANalyzer, DANalyzer, AGENerator, DGENerator, SWEep, or GRAPh	Required parameter
filename	String	Full file path in quoted string for the external storage. For example: "\Storage 1\GenState1.gen"	Required parameter
		For the internal storage, only the file name and extension are required. For example: "GenState1.gen"	

Remarks

- INTernal indicates the U8903A internal memory and EXTernal indicates an external USB flash storage.
- The file extension type must follow the system mode. The file extension for the analog analyzer state is '.ana', for the digital analyzer state is '.dan', for the analog generator state is '.gen', for the digital generator state is '.dge', for the sweep state is '.swe', and for the graph state is '.gra'. An error will be generated if the file extension does not match the system mode. However, if you do not enter the file extension, the corresponding extension will be automatically applied to the file name once the file is saved.

Examples

The following command stores the analog generator state to a file named 'GenState1.gen' in the U8903A internal memory.

```
MMEM:STOR:STAT INT, AGEN, "GenState1.gen"
```

The following command stores the analog analyzer state to a file named 'AnaState2.ana' in the root directory of an external USB flash storage.

```
MMEM:STOR:STAT EXT, AAN, "\Storage 1\
AnaState2.ana"
```

MMEMory:STORe:STATe:CHANnel

Syntax

MMEMory:STORe:STATe:CHANnel <location>,
<system mode>, (@<channel>), <filename>

Description

Stores the current U8903A single channel state to a file in either the internal storage or an external USB flash storage. The <filename> parameter is a quoted string and the <location> parameter refers to the storage location of the state file. The <system mode> parameter refers to the U8903A mode of either analog analyzer, digital analyzer, or analog generator.

Parameters

Item	Туре	Range of values	Default value
location	Discrete	INTernal or EXTernal	Required parameter
system mode	Discrete	AANalyzer, DANalyzer, or AGENerator	Required parameter
channel	Numeric	1 or 2	Required parameter
filename	String	Full file path in quoted string for the external storage. For example: "\Storage 1\GenCh1State.gen"	Required parameter
		For the internal storage, only the file name and extension are required. For example: "GenCh1State.gen"	

Remarks

- INTernal indicates the U8903A internal memory and EXTernal indicates an external USB flash storage.
- The file extension type must follow the system mode. The file extension for the analog analyzer state is '.ana', for the digital analyzer state is '.dan', and for the analog generator state is '.gen'. An error will be generated if the file extension does not match the system mode. However, if you do not enter the file extension, the corresponding extension will be automatically applied to the file name once the file is saved.
- The stored channel state file may be loaded to any other channel but must be within the same system mode. For example, if you have stored the analyzer channel 1 state to a file named 'AnaCh1State.ana', then you may load the 'AnaCh1State.ana' file to channel 2 within the analyzer mode.
- This command is not applicable for the digital generator, sweep, and graph mode.

Examples

The following command stores the generator channel 1 state to a file named 'GenCh1State.gen' in the U8903A internal memory.

```
MMEM:STOR:STAT:CHAN INT, AGEN, (@1), "GenCh1State.gen"
```

The following command stores the analyzer channel 2 state to a file named 'AnaCh2State.ana' in the '\Storage 1' directory of an external USB flash storage.

```
MMEM:STOR:STAT:CHAN EXT, AAN, (@2),
"\Storage 1\AnaCh2State.ana"
```

Measure Subsystem

Measure Subsystem

The Measure subsystem provides the commands to acquire the channel status and user status bytes for the digital analyzer.

MEASure:DIGital:CSTatus:DATA?

Syntax

MEASure:DIGital:CSTatus:DATA? (@<channel list>)

Description

Retrieves the 24 bytes of the channel status bytes.

Parameter

ltem	Туре	Range of values	Default value
channel list	Discrete	One or more analyzer channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Example

The following command queries the 24 bytes of the channel status bytes for digital analyzer channel 1.

MEAS:DIG:CST:DATA? (@D1)

MEASure:DIGital:CSTatus:BYTE?

Syntax

MEASure:DIGital:CSTatus:BYTE? <byte number>,
 (@<channel list>)

Description

Retrieves a particular byte of the channel status bytes in hexadecimal characters.

Parameters

Item	Туре	Range of values	Default value
byte number	Numeric	0 to 23	0
channel list	Discrete	One or more analyzer channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Example

The following command queries the byte 8 of the channel status bytes for digital analyzer channel 1.

MEAS:DIG:CST:BYTE? 8, (@D1)

MEASure:DIGital:CSTatus:FIELd?

Syntax

MEASure:DIGital:CSTatus:FIELd? <field name>,
 (@<channel list>)

Description

Retrieves the channel status bytes field value of a particular field name for the specified channel.

Parameters

Item	Туре	Range of values	Default value
field name	String	Refer to "Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names" on page 594.	
channel list	Discrete	One or more analyzer channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Example

The following command queries the field value of the Audio Mode for digital analyzer channel 1.

MEAS:DIG:CST:FIEL? "Audio Mode", (@D1)

MEASure:DIGital:USTatus:DATA?

Syntax

MEASure:DIGital:USTatus:DATA? (@<channel list>)

Description

Retrieves the 24 bytes of the user status bytes.

Parameter

Item	Туре	Range of values	Default value
channel list	Discrete	One or more analyzer channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Example

The following command queries the 24 bytes of the user status bytes for digital analyzer channel 1.

MEAS:DIG:UST:DATA? (@D1)

Measure Subsystem

MEASure:DIGital:USTatus:BYTE?

Syntax

MEASure:DIGital:USTatus:BYTE? <byte number>,
 (@<channel list>)

Description

Retrieves a particular byte of the user status bytes in hexadecimal characters.

Parameters

Item	Туре	Range of values	Default value
byte number	Numeric	0 to 23	0
channel list	Discrete	One or more analyzer channels. • (@D1) or (@D2) for single channel • (@D1,D2) for channel 1 and 2	Required parameter

Example

The following command queries the byte 8 of the user status bytes for digital analyzer channel 1.

MEAS:DIG:UST:BYTE? 8, (@D1)

Status Subsystem

The Status reporting commands allow you to determine the operating condition of the U8903A at any time. Refer to "SCPI Status System" on page 39 for more information on the status registers.

STATus:PRESet

Syntax

STATus: PRESet

Description

Sets all defined bits in the status system PTR registers and clears all bits in the NTR and enable registers.

Operation register	Preset setting
STATus:0PERation:ENABle	0 – all bits disabled
STATus:0PERation:NTR	0 – all bits disabled
STATus:0PERation:PTR	32767 – all defined bits enabled
STATus:QUEStionable:ENABle	0 – all bits disabled
STATus:QUEStionable:NTR	0 – all bits disabled
STATus:QUEStionable:PTR	32767 – all defined bits enabled

Example

The following command presets the Operation enable register.

STAT: PRES

Status Subsystem

STATus: OPERation: CONDition?

Syntax

STATus: OPERation: CONDition?

Description

Queries the condition register for the Standard Operation register group and returns the binary-weighted sum of all bits set in the register. This is a read-only register and the bits are not cleared when you read the register.

Remarks

For more information on the Operation condition register, refer to "Status system diagram" on page 40. The bit definitions for the Standard Operation register are listed in "Standard Operation register" on page 41.

Example

The following query reads the condition register (bit 3 is set).

STAT: OPER: COND?

Typical response: 8

STATus: OPERation: ENABle

Syntax

STATus:OPERation:ENABle <enable value>
STATus:OPERation:ENABle?

Description

Enables the bits in the enable register for the Standard Operation register group. The selected bits are then reported to the Status Byte register. The query returns the binary-weighted sum of all bits set in the register.

Parameter

ltem	Туре	Range of values	Default value
enable value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	0

- For more information on the Operation enable register, refer to "Status system diagram" on page 40. The bit definitions for the Standard Operation register are listed in "Standard Operation register" on page 41.
- Use the <enable value> parameter to specify which bits will be reported to the Status Byte register. The specified decimal value corresponds to the binary-weighted sum of the bits you wish to enable in the register. For example, to enable bit 3 (decimal value = 8) and bit 4 (decimal value = 16), the corresponding decimal value would be 24 (8 + 16).
- The clear status (*CLS) command will not clear the enable register but it clears all bits in the event register.
- The STATus: PRESet command will clear all bits in the enable register.

Status Subsystem

• The *RST and instrument preset (SYSTem: PRESet) commands have no effect on this register.

Examples

The following command enables bit 3 (decimal value = 8) in the enable register.

STAT: OPER: ENAB 8

The following query returns the bits enabled in the register.

STAT: OPER: ENAB?

Typical response: 8

STATus: OPERation[:EVENt]?

Syntax

STATus:OPERation[:EVENt]?

Description

Queries the event register for the Standard Operation register group and returns the binary-weighted sum of all bits set in the register. This is a read-only register and the bits are cleared when you read the register.

- For more information on the Operation event register, refer to "Status system diagram" on page 40. The bit definitions for the Standard Operation register are listed in "Standard Operation register" on page 41.
- Once a bit is set, it remains set until cleared by reading the event register or the clear status (*CLS) command.
- The *RST, instrument preset (SYSTem: PRESet), and STATus: PRESet commands have no effect on this register.

Example

The following query reads the event register (bit 3 is set).

STAT: OPER?

Typical response: 8

STATus: OPERation: NTRansition

Syntax

STATus:OPERation:NTRansition <value>
STATus:OPERation:NTRansition?

Description

Sets and reads the value of the Operation Negative-Transition (NTR) register. This register serves as a polarity filter between the Operation condition and Operation event registers. When a bit in the Operation NTR register is set to 1, then a 1-to-0 transition of the corresponding bit in the Operation condition register causes that bit in the Operation event register to be set. The query returns the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	Preset = 0

Status Subsystem

Remarks

- The bit definitions for the Standard Operation register are listed in "Standard Operation register" on page 41.
- If the same bits in both NTR and PTR registers are set to 1, then any transition of that bit at the Operation condition register sets the corresponding bit in the Operation event register.
- If the same bits in both NTR and PTR registers are set to 0, then no transition of that bit at the Operation condition register can set the corresponding bit in the Operation event register.
- The STATus: PRESet command will set all bits in the NTR register to 0.
- The *RST and instrument preset (SYSTem:PRESet) commands have no effect on this register.

Examples

The following command enables bits 3 and 4 (decimal value = 24) in the NTR register.

STAT:OPER:NTR 24

The following query returns the bits enabled in the register.

STAT: OPER: NTR?

Typical response: 24

STATus: OPERation: PTRansition

Syntax

STATus:OPERation:PTRansition <value>
STATus:OPERation:PTRansition?

Description

Sets and reads the value of the Operation Positive-Transition (PTR) register. This register serves as a polarity filter between the Operation condition and Operation event registers. When a bit in the Operation PTR register is set to 1, then a 0-to-1 transition of the corresponding bit in the Operation condition register causes that bit in the Operation event register to be set. The query returns the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	Preset = 32767

- The bit definitions for the Standard Operation register are listed in "Standard Operation register" on page 41.
- If the same bits in both NTR and PTR registers are set to 1, then any transition of that bit at the Operation condition register sets the corresponding bit in the Operation event register.
- If the same bits in both NTR and PTR registers are set to 0, then no transition of that bit at the Operation condition register can set the corresponding bit in the Operation Event register.
- The STATus: PRESet command will set all bits in the PTR register to 1.

Status Subsystem

• The *RST and instrument preset (SYSTem: PRESet) commands have no effect on this register.

Examples

The following command enables bits 3 and 4 (decimal value = 24) in the PTR register.

STAT:OPER:PTR 24

The following query returns the bits enabled in the register.

STAT: OPER: PTR?

Typical response: 24

STATus: QUEStionable: CONDition?

Syntax

STATus: QUEStionable: CONDition?

Description

Queries the condition register for the Questionable Data register group and returns the binary-weighted sum of all bits set in the register. This is a read-only register and the bits are not cleared when you read the register.

Remarks

For more information on the Questionable condition register, refer to "Status system diagram" on page 40. The bit definitions for the Questionable Data register are listed in "Questionable Status registers" on page 41.

Example

The following query reads the condition register (bit 0 is set).

STAT: QUES: COND?

Typical response: 1

STATus: QUEStionable: ENABle

Syntax

STATus:QUEStionable:ENABle <enable value>
STATus:QUEStionable:ENABle?

Description

Enables the bits in the enable register for the Questionable Data register group. The selected bits are then reported to the Status Byte register. The query returns the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
enable value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	0

- For more information on the Questionable enable register, refer to "Status system diagram" on page 40. The bit definitions for the Questionable Data register are listed in "Questionable Status registers" on page 41.
- Use the <enable value> parameter to specify which bits will be reported to the Status Byte register. The specified decimal value corresponds to the binary-weighted sum of the bits you wish to enable in the register.
- The clear status (*CLS) command will not clear the enable register but it clears all bits in the event register.
- The STATus: PRESet command will clear all bits in the enable register.
- The *RST and instrument preset (SYSTem: PRESet) commands have no effect on this register.

Status Subsystem

Examples

The following command enables bit 0 (decimal value = 1) in the enable register.

STAT: QUES: ENAB 1

The following query returns the bit enabled in the register.

STAT: QUES: ENAB?

Typical response: 1

STATus:QUEStionable[:EVENt]?

Syntax

STATus:QUEStionable[:EVENt]?

Description

Queries the event register for the Questionable Data register group and returns the binary-weighted sum of all bits set in the register. This is a read-only register and the bits are cleared when you read the register.

- For more information on the Questionable event register, refer to "Status system diagram" on page 40. The bit definitions for the Questionable Data register are listed in "Questionable Status registers" on page 41.
- Once a bit is set, it remains set until cleared by reading the event register or the clear status (*CLS) command.
- The *RST, instrument preset (SYSTem: PRESet), and STATus: PRESet commands have no effect on this register.

Example

The following query reads the event register (bit 0 is set).

STAT: QUES?

Typical response: 1

STATus: QUEStionable: NTRansition

Syntax

STATus:QUEStionable:NTRansition <value> STATus:QUEStionable:NTRansition?

Description

Sets and reads the value of the Questionable Negative-Transition (NTR) register. This register serves as a polarity filter between the Questionable condition and Questionable event registers. When a bit in the Questionable NTR register is set to 1, then a 1-to-0 transition of the corresponding bit in the Questionable condition register causes that bit in the Questionable event register to be set. The query returns the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	Preset = 0

Status Subsystem

Remarks

- The bit definitions for the Questionable Data register is listed in "Questionable Status registers" on page 41.
- If the same bits in both NTR and PTR registers are set to 1, then any transition of that bit at the Questionable condition register sets the corresponding bit in the Questionable event register.
- If the same bits in both NTR and PTR registers are set to 0, then no transition of that bit at the Questionable condition register can set the corresponding bit in the Questionable event register.
- The STATus: PRESet command will set all bits in the NTR register to 0.
- The *RST and instrument preset (SYSTem:PRESet) commands have no effect on this register.

Examples

The following command enables bit 0 (decimal value = 1) in the NTR register.

STAT: QUES: NTR 1

The following query returns the bit enabled in the register.

STAT: QUES: NTR?

Typical response: 1

STATus: QUEStionable: PTRansition

Syntax

STATus:QUEStionable:PTRansition <value> STATus:QUEStionable:PTRansition?

Description

Sets and reads the value of the Questionable Positive-Transition (PTR) register. This register serves as a polarity filter between the Questionable condition and Questionable event registers. When a bit in the Questionable PTR register is set to 1, then a 0-to-1 transition of the corresponding bit in the Questionable condition register causes that bit in the Questionable event register to be set. The query returns the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	Preset = 32767

- The bit definitions for the Questionable Data register is listed in "Questionable Status registers" on page 41.
- If the same bits in both NTR and PTR registers are set to 1, then any transition of that bit at the Questionable condition register sets the corresponding bit in the Questionable event register.
- If the same bits in both NTR and PTR registers are set to 0, then no transition of that bit at the Questionable condition register can set the corresponding bit in the Questionable event register.
- The STATus: PRESet command will set all bits in the PTR register to 1.

Status Subsystem

• The *RST and instrument preset (SYSTem: PRESet) commands have no effect on this register.

Examples

The following command enables bit 0 (decimal value = 1) in the PTR register.

STAT: QUES: PTR 1

The following query returns the bit enabled in the register.

STAT: QUES: PTR?

Typical response: 1

STATus:QUEStionable:VOLTage:CONDition?

Syntax

STATus: QUEStionable: VOLTage: CONDition?

Description

Queries the condition register for the Questionable Voltage register group and returns the binary-weighted sum of all bits set in the register. This is a read-only register and the bits are not cleared when you read the register.

Remarks

For more information on the Questionable condition register, refer to "Status system diagram" on page 40. The bit definitions for the Questionable Voltage register are listed in "Questionable Status registers" on page 41.

Example

The following query reads the condition register (bit 1 is set).

STAT: QUES: VOLT: COND?

Typical response: 2

STATus:QUEStionable:VOLTage:ENABle

Syntax

STATus:QUEStionable:VOLTage:ENABle <enable value>

STATus:QUEStionable:VOLTage:ENABle?

Description

Enables the bits in the enable register for the Questionable Voltage register group. The selected bits are then reported to the Questionable Data register. The query returns the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
enable value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	0

- For more information on the Questionable enable register, refer to "Status system diagram" on page 40. The bit definitions for the Questionable Voltage register are listed in "Questionable Status registers" on page 41.
- Use the <enable value> parameter to specify which bits will be reported to the Questionable Data register. The specified decimal value corresponds to the binary-weighted sum of the bits you wish to enable in the register. For example, to enable bit 0 (decimal value = 1) and bit 1 (decimal value = 2), the corresponding decimal value would be 3 (1 + 2).
- The clear status (*CLS) command will not clear the enable register but it clears all bits in the event register.
- The *RST and instrument preset (SYSTem: PRESet) commands have no effect on this register.

Status Subsystem

Examples

The following command enables bit 1 (decimal value = 2) in the enable register.

STAT:QUES:VOLT:ENAB 2

The following query returns the bit enabled in the register.

STAT: QUES: VOLT: ENAB?

Typical response: 2

STATus:QUEStionable:VOLTage[:EVENt]?

Syntax

STATus:QUEStionable:VOLTage[:EVENt]?

Description

Queries the event register for the Questionable Voltage register group and returns the binary-weighted sum of all bits set in the register. This is a read-only register and the bits are cleared when you read the register.

- For more information on the Questionable event register, refer to "Status system diagram" on page 40. The bit definitions for the Questionable Voltage register are listed in "Questionable Status registers" on page 41.
- Once a bit is set, it remains set until cleared by reading the event register or the clear status (*CLS) command.
- The *RST, instrument preset (SYSTem: PRESet), and STATus: PRESet commands have no effect on this register.

Example

The following query reads the event register (bit 1 is set).

STAT: QUES: VOLT?

Typical response: 2

STATus: QUEStionable: VOLTage: NTRansition

Syntax

STATus:QUEStionable:VOLTage:NTRansition <value> STATus:QUEStionable:VOLTage:NTRansition?

Description

Sets and reads the value of the Questionable Voltage Negative-Transition (NTR) register. This register serves as a polarity filter between the Questionable Voltage condition and Questionable Voltage event registers. When a bit in the Questionable Voltage NTR register is set to 1, then a 1-to-0 transition of the corresponding bit in the Questionable Voltage condition register causes that bit in the Questionable Voltage event register to be set. The query returns the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	Preset = 0

Remarks

• The bit definitions for the Questionable Voltage register are listed in "Questionable Status registers" on page 41.

Status Subsystem

- If the same bits in both NTR and PTR registers are set to 1, then any transition of that bit at the Questionable Voltage condition register sets the corresponding bit in the Questionable Voltage event register.
- If the same bits in both NTR and PTR registers are set to 0, then no transition of that bit at the Questionable Voltage condition register can set the corresponding bit in the Questionable Voltage event register.
- The STATus: PRESet command will set all bits in the NTR register to 0.
- The *RST and instrument preset (SYSTem: PRESet) commands have no effect on this register.

Examples

The following command enables bits 0 and 1 (decimal value = 3) in the NTR register.

STAT:QUES:VOLT:NTR 3

The following query returns the bits enabled in the register.

STAT: QUES: VOLT: NTR?

Typical response: 3

STATus:QUEStionable:VOLTage:PTRansition

Syntax

STATus:QUEStionable:VOLTage:PTRansition <value>STATus:QUEStionable:VOLTage:PTRansition?

Description

Sets and reads the value of the Questionable Voltage Positive-Transition (PTR) register. This register serves as a polarity filter between the Questionable Voltage condition and Questionable Voltage event registers. When a bit in the Questionable Voltage PTR register is set to 1, then a 0-to-1 transition of the corresponding bit in the Questionable Voltage condition register causes that bit in the Questionable Voltage event register to be set. The query returns the binary-weighted sum of all bits set in the register.

Parameter

Item	Туре	Range of values	Default value
value	Numeric	A decimal value which corresponds to the binary-weighted sum of the bits in the register	Preset = 32767

- The bit definitions for the Questionable Voltage register are listed in "Questionable Status registers" on page 41.
- If the same bits in both NTR and PTR registers are set to 1, then any transition of that bit at the Questionable Voltage condition register sets the corresponding bit in the Questionable Voltage event register.
- If the same bits in both NTR and PTR registers are set to 0, then no transition of that bit at the Questionable Voltage condition register can set the corresponding bit in the Questionable Voltage event register.
- The STATus: PRESet command will set all bits in the PTR register to 1.

Status Subsystem

• The *RST and instrument preset (SYSTem: PRESet) commands have no effect on this register.

Examples

The following command enables bits 0 and 1 (decimal value = 3) in the PTR register.

STAT:QUES:VOLT:PTR 3

The following query returns the bits enabled in the register.

STAT:QUES:VOLT:PTR?

Typical response: 3

Programming Examples

Generating the normal sine waveform

Example 1

The following command sequence provides an example on how to generate a normal 3 kHz, 2 Vrms sine waveform on the analog generator channel 1.

```
SOUR: FUNC SINE, (@1) //Sets the waveform type to sine.
SOUR: VOLT 2Vrms, (@1) //Sets the amplitude to 2 Vrms.
SOUR: FREQ1 3kHz, (@1) //Sets the frequency to 3 kHz.
OUTP: STAT ON, (@1) //Turns on the analog output.
```

Example 2

The following command sequence provides an example on how to generate a normal 3 kHz, 1 FFS sine waveform on the digital generator channel 1.

```
SOUR:DIG:FUNC SINE, (@D1) //Sets the digital waveform type to sine.

SOUR:DIG:VOLT 1FFS, (@D1) //Sets the amplitude to 1 FFS.

SOUR:DIG:FREQ1 3kHz, (@D1) //Sets the frequency to 3 kHz.

OUTP:DIG:STAT ON, (@D1) //Turns on the digital output.
```

Programming Examples

Generating the multitone waveform

Example 1

The following command sequence gives an example on how to generate a multitone waveform on the analog generator channel 1.

```
SOUR: FUNC MULT, (@1)
                                        //Sets the waveform type to multitone.
SOUR: MULT: RLEN L32768, (@1)
                                        //Sets the multitone record length to 32768
                                          points.
                                        //Sets the multitone waveform length to 32768
SOUR: MULT: WLEN L32768, (@1)
                                        //Sets the start frequency to 500 Hz.
SOUR: MULT: FREQ: STAR 500Hz, (@1)
                                        //Sets the stop frequency to 5 kHz.
SOUR: MULT: FREO: STOP 5kHz, (@1)
SOUR: MULT: COUN 20, (@1)
                                        //Sets the number of tones to 20.
SOUR: MULT: FREO: SPAC LOG, (@1)
                                        //Sets the frequency spacing among the tones to
                                          logarithmic.
SOUR: VOLT 2Vrms, (@1)
                                        //Sets the amplitude to 2 Vrms.
                                        //Turns on the analog output.
OUTP:STAT ON, (@1)
```

Example 2

The following command sequence gives an example on how to generate a multitone waveform on the digital generator channel 1.

```
SOUR:DIG:FUNC MULT //Sets the waveform type to multitone.

SOUR:DIG:MULT:COUN 20, (@D1) //Sets the number of tones to 20.

SOUR:DIG:MULT:FREQ:STAR 500Hz, //Sets the start frequency to 500 Hz.

(@D1)

SOUR:DIG:MULT:FREQ:STOP 5kHz, //Sets the stop frequency to 5 kHz.

(@D1)

SOUR:DIG:MULT:FREQ:SPAC LOG, (@D1) //Sets the frequency spacing among the tones to logarithmic.
```

```
SOUR:DIG:VOLT 1FFS, (@D1) //Sets the amplitude to 1 FFS.
OUTP:DIG:STAT ON, (@D1) //Turns on the digital output.
```

Example 3

The following command sequence gives an example on how to manipulate the tones of multitone waveform on the digital generator channel 1.

```
//Sets the waveform type to multitone.
SOUR: DIG: FUNC MULT
                                        //Clears all the tones and an initial tone with
SOUR:DIG:MULT:TONE:CLE (@D1)
                                          1 kHz frequency, 1 FFS amplitude, and 0 ^{\circ}
                                          phase will be the default.
SOUR: DIG: MULT: TONE: FREQ 5kHz, (1), //Sets the frequency of the first tone to 5 kHz.
(@D1)
SOUR: DIG: MULT: TONE: VOLT 1FFS, (1), //Sets the amplitude of the first tone to 1 FFS.
(@D1)
SOUR: DIG: MULT: TONE: PHAS 15, (1), // Sets the phase of the first tone to 15 °.
(@D1)
                                       //Adds a 10 kHz frequency, 0.5 FFS amplitude
SOUR:DIG:MULT:TONE:ADD 1, 10kHz,
                                          and 30 ° phase tone.
0.5FFS, 30, (@D1)
                                        //Adds a 15 kHz frequency, 0 dBV amplitude
SOUR:DIG:MULT:TONE:ADD 2, 15kHz,
0dBV, 45, (@D1)
                                          and 45 ° phase tone.
                                        //Adds a 20 kHz frequency, 0.5 Vrms amplitude
SOUR:DIG:MULT:TONE:ADD 3, 20kHz,
0.5Vrms, 90, (@D1)
                                          and 90 ° phase tone.
SOUR:DIG:MULT:TONE:DEL 1, (@D1)
                                        //Delete the tone index 1 (tone with 10 kHz
                                          frequency).
SOUR:DIG:MULT:TONE:PHAS:RAND (@D1) //Randomize the phase of all the tones.
SOUR:DIG:VOLT 0.5FFS, (@D1)
                                        //Sets the multitone waveform amplitude to
                                          0.5 FFS.
OUTP:DIG:STAT ON, (@D1)
                                        //Turns on the output.
```

Generating the arbitrary waveform

The following examples show how to generate a 3 Vp, 0 V offset arbitrary waveform on the generator channel 1.

NOTE

The arbitrary data must be uploaded before setting the waveform type to arbitrary.

Example 1

The following command sequence provides an example to generate an arbitrary waveform by uploading the data stream from the PC to the U8903A.

```
DATA:WAV 3, 0, <data> // Uploads the arbitrary data into the U8903A.

The <data> parameter is in the IEEE-488.2 binary block program data format.

SOUR:FUNC ARB, (@1) // Sets the waveform type to arbitrary on channel 1.

OUTP:STAT ON, (@1) // Turns on the output.
```

Example 2

The following command sequence provides an example to generate an arbitrary waveform by loading the arbitrary waveform data into the U8903A from the "waveform1.arb" file in your USB external flash storage.

After generating the arbitrary waveform, if you wish to change the amplitude of the waveform from 3 Vp to 5 Vp, just send the SOUR: VOLT 5Vp, (@1) command to change the amplitude to 5 Vp without the need to reupload the arbitrary data. This also applies to changing the value of the DC offset.

The following examples show how to generate a 0.5 FFS arbitrary waveform on the digital generator channel 1.

Example 3

The following command sequence provides an example to generate an arbitrary waveform by uploading the wave file as data stream from the PC to the U8903A.

```
DATA:WAVF <data> // Uploads the wave file data into the U8903A.

The <data> parameter is in the IEEE-488.2 binary block program data format.

SOUR:DIG:FUNC ARB // Sets the waveform type to arbitrary.

SOUR:DIG:VOLT 0.5FFS, (@D1) // Sets the amplitude to 0.5 FFS.

OUTP:DIG:STAT ON, (@D1) // Turns on the output.
```

Example 4

The following command sequence provides an example to generate an arbitrary waveform by loading the wave file data into the U8903A from the "sine.wav" file in your USB external flash storage.

```
MMEM:LOAD:WAVF "\Storage 1\ // Loads the wave file data into the U8903A from the "sine.wav" file in your external USB flash storage.

SOUR:DIG:FUNC ARB // Sets the waveform type to arbitrary.

SOUR:DIG:VOLT 0.5FFS, (@D1) // Sets the amplitude to 0.5 FFS

OUTP:DIG:STAT ON, (@D1) // Turns on the output.
```

Programming Examples

Making basic measurements

Example 1

The following command sequence provides an example on how to measure the frequency and amplitude using the analog analyzer.

```
SENS: FUNC1 FREQ, (@1)
                                         //Sets the first measurement function to
                                           frequency on analog channel 1.
SENS:FUNC2 VAC, (@1)
                                         //Sets the second measurement function to
                                           amplitude on analog channel 1.
INIT: ANAL (@1)
                                         //Initiates the frequency and amplitude
                                           measurements on analog channel 1.
STAT: OPER: COND?
                                         //Queries the measurement status. The query
                                           returns 0 if the measurement is completed. To
                                           ensure that you get a valid result, you must
                                           keep sending this command until you get a 0.
FETC? FUNC1, (@1)
                                         //Acquires the frequency measurement result.
FETC? FUNC2, (@1)
                                         //Acquires the amplitude measurement result.
```

Example 2

The following command sequence provides an example on how to measure the frequency and amplitude using the digital analyzer.

SENS:DIG:FUNC1 FREQ, (@D1)	//Sets the first measurement function to frequency on digital channel 1.
SENS:DIG:FUNC2 VAC, (@D1)	//Sets the second measurement function to amplitude on digital channel 1.
INIT:DIG:ANAL (@D1)	//Initiates the frequency and amplitude measurements on channel 1.
STAT: OPER: COND?	//Queries the measurement status. The query returns 0 if the measurement is completed. To ensure that you get a valid result, you must keep sending this command until you get a 0 .
FETC:DIG? FUNC1, (@D1)	// Acquires the frequency measurement result.
FETC:DIG? FUNC2, (@D1)	// Acquires the amplitude measurement result.

Measuring the crosstalk

There are two modes of crosstalk measurement comprising channel driven (DCRosstalk) and channel measured (MCRosstalk).

In the channel driven mode, the designated reference channel will be injected with the stimulus. The presence of this signal in the other channel will be measured. The crosstalk result of the channel indicates the crosstalk from the reference channel to that channel. In the channel measured mode, the designated reference channel is used to measure the crosstalk from the other channel to this channel. The crosstalk result of the channel indicates the crosstalk from the other channel to the reference channel.

To measure the crosstalk from channel 2 to channel 1, send the following command sequence.

```
SENS: REF: CHAN 2
                                         //Sets the reference channel to channel 2
                                           (channel driven).
                                         //Sets the analyzer second measurement
SENS: FUNC2 DCR, (@1,2)
                                           function to crosstalk for all channels in the
                                           U8903A.
INIT: ANAL (@1)
                                         //Initiates the crosstalk measurement.
STAT: OPER: COND?
                                         //Queries the measurement status. The query
                                           returns 0 if the measurement is completed. To
                                           ensure that you get a valid result, you must
                                           keep sending this command until you get a 0.
                                         //Acquires the measurement result.
FETC? FUNC2 (@1)
```

Measuring the FFT magnitude

The following command sequence gives you an example on how to perform the FFT magnitude measurement of the input signals.

```
DISP: ANAL: MODE MAGN
                                          //Sets the analysis mode to FFT magnitude.
SENS:WAV:POIN 256
                                          //Sets the acquisition length to 256.
                                          //Sets the graph trigger source to Immediate.
TRIG:GRAP:SOUR IMM
INIT: GRAP (@1)
                                          //Initiates the measurements on channel 1.
STAT: OPER: COND?
                                          //Polls the status register to check if the
                                            measuring operation has completed. The
                                           condition register will return 0 if the
                                            operation has completed.
                                          //Acquires the array of measurement data for
FETC:ARR? (@1)
                                            channel 1.
```

Measuring the FFT phase

The following command sequence gives you an example on how to perform the FFT phase measurement of the input signals.

```
//Sets the analysis mode to FFT phase.
DISP: ANAL: MODE PHAS
SENS:WAV:POIN 256
                                          //Sets the acquisition length to 256.
                                          //Sets the graph trigger source to Immediate.
TRIG: GRAP: SOUR IMM
INIT: GRAP (@1,2)
                                          //Initiates the measurements on all channels.
                                            For the FFT phase measurement, you need to
                                            include all the U8903A channels.
                                          //Polls the status register to check if the
STAT: OPER: COND?
                                            measuring operation has completed. The
                                            condition register will return 0 if the
                                            operation has completed.
                                          //Acquires the array of measurement data for
FETC:ARR? (@2)
                                            channel 2.
```

Measuring in the time domain

The following command sequence gives you an example on how to perform the time domain measurement of the digital interface input signals.

```
DISP: ANAL: MODE TIME
                                         //Sets the analysis mode to time domain.
SENS:DIG:WAV:POIN 1024
                                         //Sets the acquisition length to 1024.
                                         //Sets the graph trigger source to Immediate.
TRIG:DIG:GRAP:SOUR IMM
                                         //Initiates the measurements on channel 1.
INIT:DIG:GRAP (@D1)
STAT: OPER: COND?
                                         //Polls the status register to check if the
                                           measuring operation has completed. The
                                           condition register will return 0 if the
                                           operation has completed.
                                         //Acquires the array of measurement data for
FETC:DIG:ARR? (@D1)
                                           channel 1
```

Performing sweep

Example 1

Frequency response is a very common test. The sweep feature of U8903A can be utilized to perform this analysis. To perform a frequency response analysis of your DUT, you can connect your DUT to any generator channel and the corresponding analyzer channel. In this example, the DUT must be connected to the analog generator channel 1 and analog analyzer channel 2.

The following command sequence provides an example to perform an automatic linear sweep on a 5 Vp sine waveform on analog generator channel 1, from 100 Hz to 1000 Hz with a step size of 200 Hz and 1 s dwell time to stabilize the DUT. The DUT signal amplitude is measured.

```
//Sets the sweep generator interface to analog.
SOUR: SWE: INT ANAL
SOUR: FUNC SINE, (@1)
                                         //Sets the generator waveform type to sine on
                                           channel 1.
SOUR: VOLT 5Vp, (@1)
                                         //Sets the amplitude of the sine waveform to
                                           5 Vp.
                                         //Sets the sweep reference channel of the
SOUR: SWE: REF: CHAN 1
                                           generator to channel 1.
SOUR: SWE: CHAN 1
                                         //Sets channel 1 to perform sweep.
SOUR: SWE: MODE ASW
                                         //Sets the sweep mode to Auto.
SOUR: SWE: PAR FREO
                                         //Sets the sweep parameter to frequency.
SOUR: SWE: SPAC LIN, (@1)
                                         //Sets the spacing type to linear.
SOUR: SWE: DWEL1 1000
                                         //Sets the dwell time to 1 s (1000 ms).
SENS:MTIM GTR
                                         //Sets the measurement time to Gen Track.
SOUR: SWE: STAR 100
                                         //Sets the sweep start value to 100 Hz.
SOUR: SWE: STOP 1000
                                         //Sets the sweep stop value to 1000 Hz.
SOUR:SWE:STEP 200
                                         //Sets the sweep step size to 200 Hz.
SENS:SWE:INT ANAL
                                         //Sets the sweep analyzer interface to analog.
                                         //Sets the sweep reference channel for
SENS:SWE:REF:CHAN 1
                                           measurement to channel 1.
SENS:SWE:CHAN 2
                                         //Sets the analyzer channel to perform sweep
                                           to channel 2.
                                         //Sets the measurement function 1 to
SENS: FUNC1 FREO, (@2)
                                           frequency.
SENS:FUNC2 VAC, (@2)
                                         //Sets the measurement function 2 to Vac.
INIT:SWE
                                         //Initiates the sweep.
STAT: OPER: COND?
                                         //Polls the status register to check if the
                                           measuring operation has completed. The
                                           condition register will return 0 if the
                                           operation has completed.
                                         //Acquires the X-axis sweep points values.
SOUR: SWE: VAL? (@2)
                                         //Acquires the sweep result for function 1.
FETC:SWE? FUNC1, (@2)
FETC:SWE? FUNC2, (@2)
                                         //Acquires the sweep result for function 2.
```

Programming Examples

Example 2

The following command sequence provides an example to perform a manual log sweep on a 5 Vrms sine waveform on channel 2, from 100 Hz to 10 kHz with a 10 ms dwell time. The number of points to sweep is 20 points. The signal amplitude is measured at the analog analyzer channel 2.

```
SOUR: SWE: INT ANAL
                                         //Sets the sweep generator interface to analog.
                                          //Sets the generator waveform type to sine on
SOUR: FUNC SINE, (@2)
                                           channel 2.
SOUR: VOLT 5Vrms, (@2)
                                          //Sets the amplitude of the sine waveform to
                                           5 Vrms.
SOUR: SWE: REF: CHAN 1
                                          //Sets the sweep reference channel of the
                                           generator to channel 1
SOUR: SWE: CHAN 2
                                          //Sets channel 2 to perform sweep.
SOUR: SWE: MODE MSW
                                          //Sets the sweep mode to Manual.
SOUR: SWE: PAR FREO1
                                          //Sets the sweep parameter to frequency.
SOUR: SWE: SPAC LOG
                                          //Sets the spacing type to logarithmic.
SOUR: SWE: DWEL 10
                                          //Sets the dwell time to 10 ms.
                                          //Sets the measurement time to Gen Track.
SENS:MTIM GTR
SOUR: SWE: STAR 100
                                          //Sets the sweep start value to 100 Hz.
SOUR: SWE: STOP 10000
                                          //Sets the sweep stop value to 10 kHz.
SOUR: SWE: POIN 20
                                          //Sets the sweep points to 20.
SENS: SWE: TNT ANAL
                                          //Sets the sweep analyzer interface to analog.
                                         //Sets the sweep reference channel for
SENS: SWE: REF: CHAN 1
                                           measurement to channel 1.
SENS:SWE:CHAN 2
                                          //Sets the analyzer channel to perform sweep
                                           to channel 2.
SENS: FUNC1 FREQ, (@2)
                                          //Sets the measurement function 1 to
                                           frequency.
SENS:FUNC2 VAC, (@2)
                                          //Sets the measurement function 2 to Vac.
INIT:SWE
                                          //Initiates the sweep.
```

```
//Polls the status register to check if the
STAT: OPER: COND?
                                            measuring operation has completed. The
                                            condition register will return 0 if the
                                            operation has completed.
                                          // Acquires the sweep result. For Manual sweep,
FETC:SWE? FUNC1, (@2)
                                            only a single result will be returned each time
                                            this query is sent.
                                          //Acquires the sweep result.
FETC:SWE? FUNC2, (@2)
SOUR: SWE: NEXT
                                          //Jumps to the next sweep point.
FETC:SWE? FUNC1, (@2)
                                          // Acquires the sweep result for the current
                                            point.
                                            Use the SOUR: SWE: NEXT command and
                                            FETC: SWE? query to obtain the sweep results
                                            for the rest of the 20 sweep points.
```

Example 3

The following command sequence provides an example on how to use the List sweep function with the U8903A digital interface. Assume that you wish to sweep a series of predefined frequency points with no fixed step size and to measure the amplitude of your DUT. You may perform an automatic sweep on the generator and analyzer channel 1 with a 0 ms dwell time, using your predefined list of frequency points.

```
//Sets the sweep generator interface to digital.

SOUR:DIG:FUNC SINE //Sets the generator waveform type to sine.

SOUR:DIG:VOLT 1FFS, (@D1) //Sets the amplitude of the sine waveform to 1 FFS.

SOUR:SWE:REF:CHAN 1 //Sets the sweep reference channel of the generator to channel 1

SOUR:SWE:CHAN 1 //Sets channel 1 to perform sweep.

SOUR:SWE:PAR FREQ1 //Sets the sweep parameter to frequency.
```

Programming Examples

MMEM.IOAD CHE (filonomo)	//Create your expen points in ear file format
MMEM:LOAD SWE, <filename></filename>	//Create your sweep points in .csv file format and save it into an external USB flash
	storage.
	For example, the file name is
	"\Storage 1\file1.csv".
SOUR:SWE:MODE ALIS	//Sets the sweep mode to Auto List.
SOUR:SWE:DWEL1 0	// Sets the dwell time to 0 ms.
SENS:SWE:INT DIG	// Sets the sweep analyzer interface to digital
SENS:SWE:REF:CHAN 1	//Sets the sweep reference channel for measurement to channel 1.
SENS:SWE:CHAN 2	//Sets the analyzer channel to perform sweep to channel 2.
SENS:DIG:FUNC1 VAC, (@D1)	// Sets the measurement function 1 to VAC.
SENS:DIG:FUNC2 VDC, (@D1)	// Sets the measurement function 2 to VDC.
SOUR: SWE: POIN?	// Queries the number of sweep points in the list.
SOUR:SWE:VAL? (@D1)	//Acquires the X-axis sweep points values.
INIT: SWE	//Initiates the sweep.
FETC:SWE? FUNC1, (@D1)	//Acquires the sweep result. For Manual sweep, only a single result will be returned each time this query is sent.
FETC:SWE? FUNC2, (@D1)	// Acquires the sweep result.

Using the user-defined filter data

This section describes the methods to load a custom filter into the U8903A by downloading the filter coefficients through SCPI or by loading the filter coefficients from a custom filter file stored in the U8903A. To create your own custom filter, you need to configure your custom filter data using an external software.

Example 1

The following command sequence provides an example on how to download a custom filter coefficients through SCPI. Assume that you wish to load an IIR low pass filter (two sections and three group delays) to the U8903A at channel 1, as well as a FIR low pass filter (one section and ten group delays) at channel 2.

```
DATA: FILT IIR, 2, 3, <data>
                                         //Sends the IIR custom filter data to the
                                           U8903A volatile memory allocated for the
                                           user-defined filter data. Refer to "Appendix
                                           G: Using the IEEE-488.2 Binary Block
                                           Format" on page 583 for the <data>
                                           parameter.
SENS:FILT:LPAS CUST, (@1)
                                         //Sets the low pass filter to Custom at channel
                                           1.
DATA: FILT FIR, 1, 10, <data>
                                         //Downloads the FIR custom filter data into the
                                           U8903A.
SENS:FILT:LPAS CUST, (@2)
                                         //Sets the low pass filter to Custom at channel
                                           2.
```

The custom filters for channel 1 and 2 are now ready to be used in the analyzer mode.

Programming Examples

Example 2

The following command sequence provides an example on how to load a custom filter coefficients from a custom filter file stored in the U8903A. Assume that you wish to use a custom low pass filter stored in the U8903A at both the analyzer channel 1 and 2.

```
MMEM:LOAD FILT, "\Filter\ // Loads the filter coefficients from the file LPF80kHz_MF_HIGH.juf" "LPF80kHz_MF_HIGH.juf" "LPF80kHz_MF_HIGH.juf" // Sets the low pass filter to Custom at channel 1 and 2.
```

The custom filters for channel 1 and 2 are now ready to be used in the analyzer mode.

Example 3

The following command sequence provides an example on how to load two different custom filters for the analyzer channel. Assume that you wish to use a custom low pass filter at analyzer channel 1 where the file "LPF80kHz_MF_HIGH.juf" is stored in the U8903A and a custom high pass filter at analyzer channel 1 where the file "myHighPass.juf" is stored in your USB external flash storage.

The custom filters for channel 1 are now ready to be used in the analyzer mode.

Making relative measurement

This section describes the methods to obtain a relative measurement based on the previous measurement result of the same channel or other channels by changing the data format rather than using an absolute measurement data.

Example 1

The following command sequence provides an example to perform a relative measurement for Vac function in analyzer mode. The data measured by channel 1 will be set as a reference level for the subsequent measurement data of channel 2.

SENS:FUNC2 VAC, (@1,2)	// Sets the second measurement function to Vac on channel 1 and channel 2.
INIT:ANAL (@1)	//initiates the analyzer measurement trigger system to take the measurement directly on channel 1.
SENS:REF:MEAS LEV, CH1, (@2)	//Sets the last measurement result obtained from channel 1 as the reference level for channel 2.
INIT:ANAL (@2)	//Initiates the analyzer measurement trigger system to take the measurement directly on channel 2.
CALC:FORM:LEV LOG, (@2)	//Sets the level measurement format to logarithmic for channel 2.
SENS:FUNC2:UNIT? (@2)	//Acquires the unit of the second measurement function for channel 2.
FETCH? FUNC2, (@2)	//Acquires the second measurement function data for channel 2 that has been set relative to the reference level.

NOTE

The acquired data is in dBr due to the CALC: FORM: LEV LOG command, which sets the level measurement format to logarithmic.

Programming Examples

Example 2

The following command sequence provides an example to perform a relative measurement for Vac measurement by varying frequency in sweep mode with one fixed reference value.

SOUR:SWE:INT ANAL	//Sets the sweep generator interface to analog.
SOUR: FUNC SINE, (@2)	$/\!/\!\operatorname{Sets}$ the generator waveform type to Sine for channel 2.
SOUR: VOLT 5Vp, (@2)	//Sets the signal amplitude level to 5 V for channel 2.
SENS:SWE:REF:CHAN 1	//Sets the sweep reference channel for measurement to channel 1.
SOUR:SWE:CHAN 2	//Sets channel 2 to perform sweep.
SOUR:SWE:MODE ASW	//Sets the sweep mode to Auto Sweep at channel 2.
SOUR:SWE:PAR FREQ1	//Sets the sweep parameter to frequency at channel 2.
SOUR:SWE:SPAC LIN	//Sets the sweep spacing to Log interval at channel 2.
SOUR:SWE:DWEL1 1000	//Sets the sweep dwell time to 1 s (1000 ms) at channel 2.
SENS:MTIM GTRACK	// Sets the analyzer measurement time to Gen Track.
SOUR:SWE:STAR 100	//Sets the sweep start point to 100 Hz for channel 2.
SOUR:SWE:STOP 1000	//Sets the sweep stop point to 1 kHz for channel 2.
SOUR:SWE:STEP 200	//Sets the sweep step size to 200 Hz for channel 2.
SENS:SWE:INT ANAL	//Sets the sweep analyzer interface to analog.
SENS:SWE:REF:CHAN 1	//Sets the sweep reference channel for measurement to channel 1.
SENS:SWE:CHAN 2	//Sets the analyzer channel to perform sweep to channel 2.

SENS:FUNC2 VAC, (@2) //Sets the second measurement function to Vac on channel 2. SENS:REF:LEV 1, (@2) //Sets the reference level to 1 V for channel 2. //Initiates the sweep for channel 2. INIT:SWE //Acquires the values of the sweep points for SOUR: SWE: VAL? (@2) channel 2. //Sets the level measurement format to CALC: FORM: LEV LOG, (@2) logarithmic for channel 2. FETC: SWE? FUNC2, (@D1) //Acquires the sweep result for channel 2 that has been set relative to the reference level of 1 V.

NOTE

The acquired data is in dBr due to the CALC: FORM: LEV LOG command, which sets the level measurement format to logarithmic.

Programming Examples

Configuring the system clock reference settings

The following command sequence provides an example to configure the system clock reference source to external Master clock in with word length of 24, and multiplier of 192.

```
OUTP:DIG:RCLK:SOUR EXT

//Sets the system clock reference source to External.

OUTP:DIG:RCLK:EXT MCLK

//Selects the external clock source type as Master clock.

OUTP:DIG:RCLK:EXT:MCLK:WLEN 24

OUTP:DIG:RCLK:EXT:MCLK:MULT 192

//Sets the Master clock word length to 24.

//Sets the Master clock multiplier to 192.

//Sets the Master clock multiplier to 192.
```

- [1] Sampling rate constrains the word length values. Please refer to "Appendix K: Word Length, Sampling Rate, and Multiplier for Master Clock In" on page 604 for the allowed word length value under different sampling rate.
- [2] When setting the word length, you may get the error message "-221, Settings conflict...". This message can be ignored. The purpose of this message is to inform that either the word length or multiplier is auto adjusted to the nearest allowable value due to the settings conflict.
- [3] Sampling rate and word length constrain the multiplier values. Please refer to "Appendix K: Word Length, Sampling Rate, and Multiplier for Master Clock In" on page 604 for the allowed multiplier value under different sampling rate and word length.

Configuring the DSI output settings

The following command sequence provides an example to configure the DSI output settings to DSP format, sample rate of 192 kHz, word length of 24, and multiplier of 192.

```
OUTP:DIG:DSI:DATA:FORM DSP //Sets the DSI audio data to DSP format.

OUTP:DIG:SRAT 192kHz //Sets the sampling rate to 192 kHz.

OUTP:DIG:DSI:AUD:WLEN 24 //Sets the DSI word length to 24. [1][2]

OUTP:DIG:DSI:MCLK:MULT 192 //Sets the DSI multiplier to 192. [3]
```

^[1] Sampling rate constrains the word length values. Please refer to "Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface" on page 597 for the allowed word length value under different sampling rate.

- [2] When setting the word length, you may get the error message "-221, Settings conflict...". This message can be ignored. The purpose of this message is to inform that either the word length or multiplier is auto adjusted to the nearest allowable value due to the settings conflict.
- [3] Sampling rate and word length constraint the multiplier values. Please refer to "Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface" on page 597 for the allowed multiplier value under different sampling rate and word length.

Configuring the AES3/SPDIF interface channel status bits data

The following examples show how to configure the channel status bits data of AES3/SPDIF interface to Professional mode, 50/15us of emphasis, 96 kHz of sample frequency and Stereo channel mode for digital generator channel 1.

Example 1

The following command sequence provides an example to configure the channel status bits data by referring to the respective field names from "Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names" on page 594.

```
OUTP:DIG:AES:MODE PROF, (@D1) //Sets the channel status bits data to Professional mode

OUTP:DIG:AES:CST:FIEL "Emphasis", //Sets the channel status bits data emphasis to 50/15us.

OUTP:DIG:AES:CST:FIEL "Sample //Sets the channel status bits data sample frequency to 96 kHz.

OUTP:DIG:AES:CST:FIEL "Channel //Sets the channel status bits data channel mode", "Stereo", (@D1) //Sets the channel status bits data channel mode to Stereo.
```

Programming Examples

Example 2

The following command sequence provides an example to configure the channel status bits data by setting the 24 bytes array of the channel status bits in hexadecimal characters.

Example 3

The following command sequence provides an example to configure the channel status bits data by setting a particular byte of channel status bits in hexadecimal characters.

```
OUTP:DIG:AES:CST:BYTE 0, #H0D, //Sets the channel status bits data to Professional mode and 50/15µs of emphasis.

OUTP:DIG:AES:CST:BYTE 1, #H02, //Sets the channel status bits data to 96 kHz of sample frequency.

OUTP:DIG:AES:CST:BYTE 4, #H10, //Sets the channel status bits data to Stereo channel mode.
```

Configuring for Bit Error Rate Test (BERT)

Example 1

The following command sequence provides an example to setup the Bit Error Rate Test (BERT). In this example, a 24-bit walking one waveform is selected as the generator test pattern. Output sampling rate is fixed to 48 kHz. The duration of the Bit Error Test is set to 100 seconds. The result of the measurement is set to be returned in hexadecimal value. Unbalanced connectors are used in this test.

NOTE

The input audio bit depth must be the same with the output bit depth.

OUTP:DIG:TYPE UNB	//Sets the output connector of the digital interface to Unbalanced.
INP:DIG:TYPE UNB	//Sets the input connector of the digital interface to Unbalanced.
OUTP:DIG:SRAT 48kHz	$//\operatorname{Sets}$ the output sample rate to 48 kHz.
SOUR:DIG:BERT:MODE ON	Enables the BERT mode.
SOUR:DIG:BERT:PATT:CAT WCON	//Sets the test pattern category to walking constant.
SOUR:DIG:BERT:WCON:TYPE WONE, (@D1,D2)	//Selects Walking One as the test pattern at digital generator channel 1 and 2.
SOUR:DIG:BERT:BWID 24	//Sets the bit depth of the test pattern to 24 bits.
SOUR:DIG:BERT:DUR 100	$//\operatorname{Sets}$ the duration of the test to 100 s.
SENS:DIG:BERT:UNIT HEX	//Sets the unit of the measurement data return in hexadecimal value.
SENS:DIG:BERT:INT 1	//Sets the reading rate to 1 second. This is only useful for the front panel. It is actually setting the refresh rate of the front panel.

Programming Examples

Example 2

In this example, a 16-bit pseudo-random waveform is used as the generator test pattern. Output sampling rate is fixed to 48 kHz. The duration of the test is set to 500 seconds. The result of the measurement is returned in decimal value. DSI connectors are used in this test.

INP:DIG:TYPE DSI	//Sets the input connector of the digital interface to Unbalanced.
OUTP:DIG:SRAT 48kHz	$/\!/\!\operatorname{Sets}$ the output sample rate to 48 kHz.
SOUR:DIG:BERT:MODE ON	Enables the BERT mode.
SOUR:DIG:BERT:PATT:CAT PSE	// Sets the test pattern category to pseudo-random.
SOUR:DIG:BERT:PSE:SEED #H0000000A, (@D1,D2)	//Sets the seed value to 10 for the pseudo-random test pattern at digital generator channel 1 and 2.
SOUR:DIG:BERT:BWID 16	//Sets the bit width of the test pattern to 16 bits.
SOUR:DIG:BERT:DUR 500	$/\!/\!\operatorname{Sets}$ the duration of the test to 500 s.
SENS:DIG:BERT:UNIT DEC	$//\operatorname{Sets}$ the unit of the measurement data return in decimal value.
SENS:DIG:BERT:INT 1	//Sets the reading rate to 1 s. This is only useful for front panel. It is actually setting the refresh rate of the front panel.

Measuring time delay introduced by DUT

A digital audio signal will have delay when the signal is transmitted through a DUT. Digital Out to Digital In Delay Measurement is a measure of time difference of the AES3 signal between the start of the first output frame and the start of the first input frame. In general, it is to measure the delay time from the selected digital input (either Balanced, Unbalanced or Optical) with reference to the selected digital output (either Balanced, Unbalanced, or Optical).

The following command sequence provides an example to measure the time delay of a DUT with Unbalanced connectors. Connect a DUT to the Digital Unbalanced output and the Digital Unbalanced input.

```
OUTP:DIG:TYPE UNB //Sets the digital output type to Unbalanced.

INP:DIG:TYPE UNB //Sets the digital input type to Unbalanced.

INIT:CONT:DIG:DEL ON //Starts the Delay Measurement.

FETC:DIG:DEL? //You can continuously acquires the result until the reading is stable.
```

Configuring Digital Serial Interface (DSI) receiver

The U8903A allows you to analyze signal generated by DUT (Device Under Test) with the DSI connector. The examples below will show you how to configure the DSI Receiver settings. Example 1 shows you how to configure the received data content. Example 2 to 5 show you how to configure the data and clock direction for the DSI receiver. To perform this test, connect your DUT Digital Serial Output to the U8903A DSI connector.

Example 1

In this example, assume that the data input from the DSI connector contains 16-bit audio data with Left Justified format. The word length of the data is 24 bits and the decoding format of the audio data is A-Law.

```
INP:DIG:DSI:AUD:FORM ALAW

//Sets the decoding format of the input audio data to A-Law.

INP:DIG:DSI:DATA:FORM LEFT

//Sets the received data format to left justified.

INP:DIG:DSI:AUD:RES 16

//Sets the received audio resolution to 16 bits.

INP:DIG:DSI:AUD:WLEN 24

//Sets the received word length to 24 bits.
```

Example 2

In this example, the Device under Test (DUT) will send bit clock, word clock and data to the U8903A DSI receiver, while Master Clock may be an external clock to the DUT or generated by the DUT. Assume that the leading edge of the word clock and data is synchronized with the rising edge of the bit clock.

```
To configure the receiver data format, refer to Example 1.

INP:DIG:TYPE DSI //Sets the input connector to Digital Serial Interface (DSI).

INP:DIG:DSI:MCLK:SOUR EXT //Sets the Master Clock source to external.
```

INP:DIG:DSI:WBCL:DIR IN	//Sets the word clock and bit clock direction to
	ln.
INP:DIG:DSI:BCLK:SYNC RIS	// Sets the leading edge of the word clock and
	data to be synchronized with the rising edge
	of the bit clock.

Example 3

In this example, the U8903A will receive a master clock either from the DUT or other external clock source. The U8903A will generate the word clock and bit clock to the DUT. The DUT will send data to the U8903A DSI receiver. Assume that the leading edge of the word clock and data is synchronized with the rising edge of the bit clock.

To configure the receiver data format, refer to Example 1.

INP:DIG:TYPE DSI	// Sets the input connector to Digital Serial Interface (DSI).
INP:DIG:DSI:MCLK:SOUR EXT	// Sets the Master Clock source to external.
INP:DIG:DSI:WBCL:DIR OUT	// Sets the word clock and bit clock direction to Out.
INP:DIG:DSI:BCLK:SYNC RIS	//Sets the leading edge of the word clock and data to be synchronized with the rising edge of the bit clock.
INP:DIG:DSI:MCLK:MULT 512	//Sets the multiplier so that the U8903A can determine the sample rate of the received signal.

Programming Examples

Example 4

In this example, the U8903A provides the master clock to the DUT. The DUT will then generates the word clock and bit clock based on the master clock and transmits to the U8903A. At the same time, the DUT will also send data to the U8903A DSI receiver for analysis. Assume that the leading edge of the word clock and data is synchronized with the rising edge of the bit clock. The U8903A internal system clock (i.e., 10 MHz) will be used as the reference clock source for the master clock.

To configure the receiver data format, refer to Example 1.

```
INP:DIG:TYPE DSI
                                          //Sets the input connector to Digital Serial
                                            Interface (DSI).
                                          //Sets the reference clock source to Internal
OUTP:DIG:RCLK:SOUR INT
                                            system clock 10 MHz.
                                          //Sets the Master Clock source to internal.
INP:DIG:DSI:MCLK:SOUR INT
                                          //Sets the word clock and bit clock direction to
INP:DIG:DSI:WBCL:DIR IN
                                            In.
OUTP:DIG:SRAT 48kHz
                                          //Sets the sample rate to 48 kHz.
INP:DIG:DSI:MCLK:MULT 96
                                          //Sets the multiplier to determine the master
                                            clock rate. The master clock rate is set to
                                            4.608 MHz.
                                            Master clock rate = sample rate × multiplier
INP:DIG:DSI:BCLK:SYNC RIS
                                          //Sets the leading edge of the word clock and
                                            data to be synchronized with the rising edge
                                            of the bit clock.
```

Example 5

In this example, the U8903A generates and provides the master clock, word clock, and bit clock to the DUT, and the DUT will transmit the data to the instrument for analysis. Assume that the leading edge of the word clock and data is synchronized with the rising edge of the bit clock. Assume that the master clock reference is the U8903A internal system clock which is 10 MHz.

To configure the receiver data format, refer to Example 1.

INP:DIG:TYPE DSI	// Sets the input connector to Digital Serial Interface (DSI).
OUTP:DIG:RCLK:SOUR INT	//Sets the reference clock source to Internal system clock 10 MHz.
INP:DIG:DSI:MCLK:SOUR INT	// Sets the Master Clock source to internal.
INP:DIG:DSI:WBCL:DIR OUT	// Sets the word clock and bit clock direction to In.
OUTP:DIG:SRAT 48kHz	// Sets the sample rate to 48 kHz.
INP:DIG:DSI:MCLK:MULT 96	//Sets the multiplier to determine the master clock rate. The master clock rate is set to 4.608 MHz.
	Master clock rate = sample rate × multiplier
INP:DIG:DSI:BCLK:SYNC RIS	//Sets the leading edge of the word clock and data to be synchronized with the rising edge of the bit clock.

Reading the bits value in the embedded received audio data

The following command sequence provides an example to view the bits value of each word of the embedded audio data in the digital signal in binary.

that there is no change)

<pre>INIT:DIG:AUD:BITS (@D1)</pre>	//Captures once the audio bits data from the digital signal for channel 1 is received.
FETC:DIG:AUD:BITS? DATA, (@D1)	// Acquires the Data bits value of channel 1 in binary.
FETC:DIG:AUD:BITS? ACT, (@D1)	// Acquires the Active bits value of channel 1 in binary.
	(Active bits are bits that have changed state during the measurement period. "1" indicates that the bit has changed state, "0" indicates

Acquiring the Channel Status Byte information

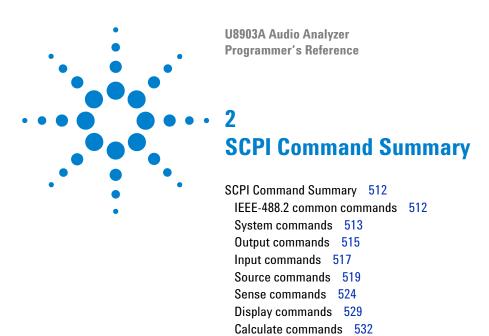
Example 1

The following command sequence provides an example to get the raw data of the Channel Status Byte information of the AES3 signal in Hexadecimal.

MEAS:DIG:CST:DATA? (@D1)

// Acquires the Channel Status Byte information for channel 1.

Example 2


The following command sequence provides an example to obtain a specific field information of the Channel Status Byte by providing the field name. In this example, we will acquire the field information of "Emphasis" for Channel 1.

```
MEAS:DIG:CST:FIEL? "Emphasis", //Acquires the Channel Status Byte information of Emphasis for channel 1.
```

THIS PAGE HAS BEEN INTE	NTIONALLY LEFT BLANI	(.	

1

Remote Interface Reference Programming Examples

Data commands 535
Sweep commands 536
Trigger commands 537
Fetch commands 538
Initiate commands 539
Abort commands 540

Mass Memory commands 540 Status commands 542

The summary of the SCPI commands is listed in this chapter.

SCPI Command Summary

IEEE-488.2 common commands

*CLS	Clears the	event registers	in all	register	groups and

also clears the error queue.

*RST Resets the U8903A to its factory default settings.

*ESE <value> Sets the bits in the Standard Event enable register.

*ESE? Returns the value of the Standard Event enable

register.

*ESR? Returns the value of the event register of the

Standard Event group.

*IDN? Reads the U8903A identification string which

contains four comma-separated fields.

*OPC Sets the "Operation Complete" bit (bit 0) in the

Standard Event register when all pending operations

have completed.

*OPC? Sends 1 to the output buffer when all pending

operations have completed.

*OPT? Returns an ASCII string identifying the digital audio

option configuration.

*SRE <value> Enables the bits in the Status Byte enable register.

*SRE? Returns the value of the Status Byte enable register.

*STB? Reads the summary (condition) of the Status Byte

register.

*TST? Initiates an internal self-test of the U8903A and

returns a pass or fail indication.

*WAI Sets the U8903A to wait for the completion of all

pending operations before executing any other

command.

*TRG Triggers the U8903A from the remote interface.

System commands

SYSTem:ERRor[:NEXT]? Returns the error number and its corresponding message string from the U8903A error queue. SYSTem:DATE <yyyy>, <mm>, Sets the date of the realtime clock in year (yyyy), < dd >month (mm), and day (dd) format. SYSTem:TIME <hh>, <mm>, <ss> Sets the realtime clock in hours (hh), minutes (mm), and seconds (ss). SYSTem: VERSion? Returns the SCPI standard version with which the U8903A is in compliance. SYSTem: COMMunicate: GPIB Assigns the U8903A GPIB (IEEE-488) address. [:SELF]:ADDRess <address> SYSTem: COMMunicate: LAN: Assigns a static Internet Protocol (IP) address for ADDRess <address> the U8903A. SYSTem: COMMunicate: LAN: Assigns the static default gateway address. DGATeway <gateway> SYSTem: COMMunicate: LAN: Queries the LAN hostname and returns an ASCII string enclosed in double quotes. HNAMe? SYSTem: COMMunicate: LAN: Sets the static subnet mask address. SMASk <subnet mask> SYSTem: COMMunicate: LAN: MAC? Reads the U8903A Media Access Control (MAC) address and returns an ASCII string enclosed in double quotes. SYSTem: COMMunicate: LAN: Enables the Dynamic Host Configuration Protocol

(DHCP) for the U8903A.

DHCP: ENABled

2 SCPI Command Summary

SCPI Command Summary

SYSTem: CHANnel? Queries the available channels in the U8903A to

determine if the channel hardware card is available

or in good condition.

SYSTem: PRESet Presets the U8903A to its factory default settings

and deletes all user-defined files.

SYSTem:RESet[:MODE]

<system mode>

Resets the customized settings of the specified U8903A system mode to the default settings.

SYSTem: RESet: CHANnel

<system mode>, (@<channel>)

Resets the customized settings of the U8903A system mode for the specified channel to the default

settings.

SYSTem:LEGacy:MODE <state>

SYSTem: LEGacy: CHANnel

<channel>

Enables or disables the legacy mode.

HP8903B.

SYSTem:DISPlay:IMAGe?

<invert color>

Prints the screen and retrieves the print screen

Sets the channel for the U8903A to emulate the

image data.

SYSTem: REMote Activates Remote mode.

SYSTem: RWLock Activates Remote with Lock mode.

SYSTem: LOCal Unlocks all the U8903A front panel keypad including

the Local key and enables the U8903A to be

controlled from the front panel.

SYSTem:DIGital:CTYPe? Queries the installed digital audio type in the

U8903A and returns either AES, DSI, or ALL.

SYSTem: UPDate: FIRMware?

<firmware list>

<filename>

Starts the U8903A firmware update process remotely and returns the firmware update process state as 0 if the update process state is not completed, or 1 if

the update process state is completed successfully.

SYSTem: UPDate: HELP? Starts the U8903A help file update process remotely

and returns the help file update process state as 0 if the update process state is not completed, or 1 if the

update process state is completed successfully.

Output commands

Sets the generator output connection for the specified channel(s).
Sets the generator output impedance for the specified channel(s).
Enables or disables the generator output for the specified channel(s).
Sets the digital generator AES3/SPDIF output connection.
Sets the sampling rate of the digital generator output signals.
Enables or disables the digital generator output for the specified channel(s).
Sets the audio encoding format of the embedded digital generator audio signals.
Enables or disables the AES3/SPDIF output for the digital generator.
Sets the output logic level for the AES3/SPDIF interface in Peak-to-Peak Voltage (Vpp).
Sets the audio resolution or bit depth for the AES3/SPDIF interface audio data to be generated.
Sets the validity bit (bit 128) of the AES3/SPDIF interface output.
Sets the first bit in the channel status block of the AES3/SPDIF interface to indicate the mode.
Sets the 24 bytes array of the channel status bits in hexadecimal characters for the specified channel(s).

2 SCPI Command Summary

SCPI Command Summary

<pre>OUTPut:DIGital:AES[:PROTocol]:CSTatus:BYTE <number>, <value>, (@<channel list="">)</channel></value></number></pre>	Sets a particular byte of the channel status bits for the specified channel(s).
<pre>OUTPut:DIGital:AES[:PROTocol]:CSTatus:FIELd <name>, <value>, (@<channel list="">)</channel></value></name></pre>	Sets the channel status bits data of a specified field name for the specified channel(s).
<pre>OUTPut:DIGital:AES[:PROTocol]:USTatus:DATA <data>, (@<channel list="">)</channel></data></pre>	Sets the 24 bytes array of the user status bits in hexadecimal characters for the specified channel(s).
<pre>OUTPut:DIGital:AES[:PROTocol]:USTatus:BYTE <number>, <value>, (@<channel list="">)</channel></value></number></pre>	Sets a particular byte of the user status bits for the specified channel(s).
OUTPut:DIGital:DSI:VOLTage < level>	Sets the output logic level for the digital serial interface (DSI) in Peak- to-Peak Voltage (Vpp).
OUTPut:DIGital:DSI:AUDio:RES olution <resolution></resolution>	Sets the audio resolution or bit depth for the DSI interface audio data to be generated.
OUTPut:DIGital:DSI:AUDio:WLE Ngth <length></length>	Sets the word length for the DSI interface.
OUTPut:DIGital:DSI:DATA:FORM at <format></format>	Sets the format for the DSI interface audio data to be generated.
OUTPut:DIGital:DSI:MCLK:STAT e <state></state>	Enables or disables the DSI interface master clock.
OUTPut:DIGital:DSI:MCLK:MULT iplier <multiplier></multiplier>	Sets the multiplier that is used to determine the master clock rate.
OUTPut:DIGital:DSI:MCLK:RATE ?	Queries the master clock rate.
OUTPut:DIGital:DSI:BCLK:SYNC:OUT <polarity></polarity>	Sets the leading edge of the data to be synchronized to the rising edge or falling edge of the bit clock that is set to Out for the digital generator.
OUTPut:DIGital:OPTical:STATe <state></state>	Enables or disables the optical output for digital generator.
OUTPut:DIGital:DSI:RCLK:SOUR ce <source/>	Sets the system clock reference source type.

OUTPut:DIGital:RCLK:EXTernal Sets the external clock source type. [:TYPE] <type> OUTPut:DIGital:RCLK:EXTernal Sets the word length of the master clock for the external clock source. :MCLK:WLENgth <length> OUTPut:DIGital:RCLK:EXTernal Sets the multiplier of the master clock for the :MCLK:MULTiplier external clock source. <multiplier> OUTPut:DIGital:SCLK:OUT:STAT Enables or disables the sync clock output for digital e <state> generator. OUTPut:DIGital:SCLK:OUT:SOUR Sets the sync clock source type. ce <source>

Sets the sync clock divider.

Input commands

OUTPut:DIGital:SCLK:OUT:DIVi

der <divider>

<pre>INPut:TYPE <type>, (@<channel list="">)</channel></type></pre>	Sets the input connection for the specified channel(s).
<pre>INPut:COUPling <coupling>, (@<channel list="">)</channel></coupling></pre>	Sets the analyzer AC or DC coupling for the specified channel(s).
INPut:BANDwidth <bandwidth></bandwidth>	Sets the analyzer measurement bandwidth.
INPut:EXTernal:GAIN	Sets the external gain of the input signal.
<pre>INPut:EXTernal:GAIN:UNIT</pre>	Sets the unit of the external gain for the specified channel(s).
<pre>INPut:DIGital:TYPE <type></type></pre>	Sets the digital analyzer input connection.
INPut:DIGital:SRATe?	Queries the sampling rate of the digital analyzer input signals.
<pre>INPut:DIGital:IMPedance:BALa nced <impedance></impedance></pre>	Sets the impedance of the digital analyzer balanced input connection.

2 SCPI Command Summary

SCPI Command Summary

<pre>INPut:DIGital:IMPedance:UNBa lanced <impedance></impedance></pre>	Sets the impedance of the digital analyzer unbalanced input connection.
<pre>INPut:DIGital:AES:AUDio[:DEC oding]:FORMat <format></format></pre>	Sets the audio decoding format of the embedded AES3/SPDIF interface audio signals.
<pre>INPut:DIGital:AES:AUDio:RESo lution <resolution></resolution></pre>	Sets the audio resolution or bit depth for the AES3/SPDIF interface audio data to be analyzed.
<pre>INPut:DIGital:DSI:VOLTage <level></level></pre>	Sets the input logic level of the incoming signal for the DSI interface.
<pre>INPut:DIGital:DSI:AUDio[:DEC oding]:FORMat <format></format></pre>	Sets the audio decoding format of the embedded DSI interface audio signals.
<pre>INPut:DIGital:DSI:AUDio:RESo lution <resolution></resolution></pre>	Sets the audio resolution or bit depth for the DSI interface audio data to be analyzed.
<pre>INPut:DIGital:DSI:AUDio:WLEN gth <length></length></pre>	Sets the word length for the DSI interface.
<pre>INPut:DIGital:DSI:MCLK:SOURc e <source/></pre>	Sets the master clock reference source type.
<pre>INPut:DIGital:DSI:WBCLK:DIRe ction <direction></direction></pre>	Sets the word clock and bit clock direction.
<pre>INPut:DIGital:DSI:MCLK:MULTi plier <multiplier></multiplier></pre>	Sets the master clock multiplier.
<pre>INPut:DIGital:DSI:BCLK:SYNC <polarity></polarity></pre>	Sets the leading edge of the data to be synchronized to the rising edge or falling edge of the bit clock.
<pre>INPut:DIGital:DSI:DATA:FORMa t <format></format></pre>	Sets the format for the DSI interface audio data to be analyzed.
<pre>INPut:DIGital:DSI:DATA:MSB:P ADDing <bits></bits></pre>	Sets the number of padding bits in front of the most significant bit (MSB).
<pre>INPut:DIGital:FREQuency:SCAL ing <scaling>, (@<channel list="">)</channel></scaling></pre>	Sets the reference sampling rate source to scale the frequency measurement for the specified channel(s).
<pre>INPut:DIGital:REFerence:SRAT e <sampling rate="">[<unit>], (@<channel list="">)</channel></unit></sampling></pre>	Sets the reference sampling rate for the specified channel(s).

Source commands

SOURce:FUNCtion <waveform type="">, (@<channel list="">)</channel></waveform>	Sets the generator waveform type for the specified channel(s).
<pre>SOURce:VOLTage[:LEVel] [:IMMediate]:OFFSet <voltage>[<unit>], (@<channel list="">)</channel></unit></voltage></pre>	Sets the signal DC offset level in V for the specified channel(s).
<pre>SOURce:VOLTage[:LEVel] [:IMMediate][:AMPLitude] <voltage>[<unit>], (@<channel list="">)</channel></unit></voltage></pre>	Sets the signal amplitude level for the specified channel(s).
<pre>SOURce:FREQuency[<j>][:CW] <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></j></pre>	Sets the signal frequency for the specified channel(s) in Hz.
<pre>SOURce:FREQuency:CENTer <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the center frequency of the DFD IEC 60268 waveform for the specified channel(s) in Hz.
<pre>SOURce:FREQuency:DIFFerence <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the frequency difference of the DFD IEC 60268 and DFD IEC 60118 waveforms for the specified channel(s) in Hz.
<pre>SOURce:FREQuency:UPPer <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the upper frequency of the DFD IEC 60118, SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms for the specified channel(s) in Hz.
<pre>SOURce:FREQuency:LOWer <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the lower frequency of the SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms for the specified channel(s) in Hz.
<pre>SOURce:VOLTage:RATio <ratio>, (@<channel list="">)</channel></ratio></pre>	Sets the amplitude ratio of the second component over the first component of the dual waveform for the specified channel(s) in percentage.
<pre>SOURce:PHASe[:ADJust] <phase>, (@<channel list="">)</channel></phase></pre>	Sets the phase of the selected channel with reference to channel 1 in degree.

2 SCPI Command Summary

SCPI Command Summary

SOURce: REFerence: IMPedance <impedance>, (@<channel list="">)</channel></impedance>	Sets the generator reference impedance for the specified channel(s) in ohms (Ω) .
<pre>SOURce:MULTitone:FREQuency:S TARt <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the start frequency of the multitone waveform for the specified channel(s).
<pre>SOURce:MULTitone:FREQuency:S TOP <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the stop frequency of the multitone waveform for the specified channel(s).
<pre>SOURce:MULTitone:FREQuency:S PACing <spacing>, (@<channel list="">)</channel></spacing></pre>	Sets the frequency spacing type between the start and stop frequency of the multitone waveform for the specified channel(s).
<pre>SOURce:MULTitone:COUNt <tone count="">, (@<channel list="">)</channel></tone></pre>	Sets the tones of the multitone waveform for the specified channel(s).
SOURce:MULTitone:WLEN <length>, (@<channel list="">)</channel></length>	Sets the waveform length of the multitone waveform for the specified channel(s).
SOURce:MULTitone:RLEN <length>, (@<channel list="">)</channel></length>	Sets the record length of the multitone waveform for the specified channel(s).
SOURce:MULTitone:CRESt? (@ <channel list="">)</channel>	Queries the crest factor of the multitone waveform for the selected channel(s).
SOURce:MULTitone:TONE:CLEar (@ <channel list="">)</channel>	Clears all the tones of the multitone waveform for the specified channel(s).
<pre>SOURce:MULTitone:TONE:ADD <index>, <frequency>[<unit>], <voltage>[<unit>], <phase>, (@<channel list="">)</channel></phase></unit></voltage></unit></frequency></index></pre>	Adds a customized tone into the multitone waveform for the specified channel(s).
SOURce:MULTitone:TONE:DELete <index>, (@<channel list="">)</channel></index>	Deletes a specific tone from the multitone waveform for the specified channel(s).
<pre>SOURce:MULTitone:TONE:FREQue ncy <frequency>[<unit>], (<tone list="">) (@<channel list="">)</channel></tone></unit></frequency></pre>	Sets the frequency of the tone(s) in the multitone waveform for the specified channel(s).

e <voltage>[<unit>], (<tone list="">) (@<channel list="">)</channel></tone></unit></voltage>	waveform for the specified channel(s).
<pre>SOURce:MULTitone:TONE:PHASe <phase>, (<tone list="">) (@<channel list="">)</channel></tone></phase></pre>	Sets the phase of the tone(s) in the multitone waveform for the specified channel(s).
SOURce:MULTitone:TONE:PHASe: RANDomize (@ <channel list="">)</channel>	Randomizes the phase of all the tones in the multitone waveform for the specified channel(s).
SOURce:DIGital:FUNCtion <pre></pre>	Sets the digital generator waveform type. The query returns the waveform type.
SOURce:DIGital:DITHer:TYPE <dither></dither>	Sets the dither type of the digital generator signal.
<pre>SOURce:DIGital:VOLTage[:LEVe 1][:IMMediate][:AMPLitude] <voltage>[<unit>], (@<channel list="">)</channel></unit></voltage></pre>	Sets the signal amplitude level for the specified digital channel(s).
<pre>SOURce:DIGital:VOLTage[:LEVe 1][:IMMediate]:OFFSet <offset>[<unit>], (@<channel list="">)</channel></unit></offset></pre>	Sets the signal DC offset level in FFS for the specified digital channel(s).
<pre>SOURce:DIGital:VOLTage:RATio <ratio>, (@<channel list="">)</channel></ratio></pre>	Sets the voltage ratio of the second component over the first component of the dual waveform for the specified digital channel(s) in percentage.
<pre>SOURce:DIGital:FREQuency[<j>] <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></j></pre>	Sets the signal frequency for the specified channel(s) in Hz. $ \\$
<pre>SOURce:DIGital:FREQuency:CEN Ter <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the center frequency of the DFD IEC 60268 waveform for the specified channel(s) in Hz.
<pre>SOURce:DIGital:FREQuency:DIF Ference <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the frequency difference of the DFD IEC 60268 and DFD IEC 60118 waveforms for the specified channel(s) in Hz.

 ${\tt SOURce:MULTitone:TONE:VOLTag} \quad Sets \ the \ voltage \ of \ the \ tone(s) \ in \ the \ multitone$

2 SCPI Command Summary

SCPI Command Summary

<pre>SOURce:DIGital:FREQuency:UPP er <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the upper frequency of the DFD IEC 60118, SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms for the specified channel(s) in Hz.
<pre>SOURce:DIGital:FREQuency:LOW er <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the lower frequency of the SMPTE 1:1, SMPTE 4:1, and SMPTE 10:1 waveforms for the specified channel(s) in Hz.
SOURce:DIGital:SBURst:ONTime <on time="">, (@<channel list="">)</channel></on>	Sets the burst on time of the sine burst waveform for the specified channel(s) in number of cycles.
<pre>SOURce:DIGital:SBURst:PERiod <period>, (@<channel list="">)</channel></period></pre>	Sets the burst period of the sine burst waveform for the specified channel(s) in number of cycles.
<pre>SOURce:DIGital:SBURst:LOWLev el <low level="">, (@<channel list="">)</channel></low></pre>	Sets the amplitude ratio of burst on to burst off for the specified channel(s) in percentage.
<pre>SOURce:DIGital:SAMPle <sample>, (@<channel list="">)</channel></sample></pre>	Sets the samples per step of the Monotonicity, Walking Zero, and Walking One waveform for the specified channel(s).
<pre>SOURce:DIGital:PHASe[:ADJust] <phase>, (@<channel list="">)</channel></phase></pre>	Sets the phase offset value of the selected channel with reference to the digital generator channel 1 in degree.
<pre>SOURce:DIGital:MULTitone:FRE Quency:STARt <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the start frequency of the multitone waveform for the specified channel(s).
<pre>SOURce:DIGital:MULTitone:FRE Quency:STOP <frequency>[<unit>], (@<channel list="">)</channel></unit></frequency></pre>	Sets the stop frequency of the multitone waveform for the specified channel(s).
<pre>SOURce:DIGital:MULTitone:FRE Quency:SPACing <spacing>, (@<channel list="">)</channel></spacing></pre>	Sets the frequency spacing type between the start and stop frequency of the multitone waveform for the specified channel(s).
<pre>SOURce:DIGital:MULTitone:COU Nt <tone count="">, (@<channel list="">)</channel></tone></pre>	Sets the tones of the multitone waveform for the specified channel(s).

SOURce: DIGital: MULTitone: CRE Queries the crest factor of the multitone waveform St? (@<channel list>) for the selected channel(s). Clears all the tones of the multitone waveform for SOURce: DIGital: MULTitone: TON E:CLEar (@<channel list>) the specified channel(s). SOURce: DIGital: MULTitone: TON Adds a customized tone into the multitone waveform E:ADD <index>, for the specified channel(s). <frequency>[<unit>], <voltage>[<unit>], <phase>, (@<channel list>) SOURce: DIGital: MULTitone: TON Deletes a specific tone from the multitone waveform E:DELete <index>, (@<channel for the specified channel(s). list>) SOURce: DIGital: MULTitone: TON Sets the frequency of the tone(s) in the multitone waveform for the specified channel(s). E:FREOuency <frequency>[<unit>], (<tone</pre> list>) (@<channel list>) SOURce: DIGital: MULTitone: TON Sets the voltage of the tone(s) in the multitone waveform for the specified channel(s). E: VOLTage < voltage > [< unit >], (<tone list>) (@<channel list>) SOURce: DIGital: MULTitone: TON Sets the phase of the tone(s) in the multitone E:PHASe <phase>, (<tone waveform for the specified channel(s). list>) (@<channel list>) SOURce: DIGital: MULTitone: TON Randomizes the phase of all the tones in the E:PHASe:RANDomize (@<channel multitone waveform for the specified channel(s). list>) SOURce: DIGital: REFerence: VOL Sets the voltage reference of the digital generator for Tage <voltage> the specified channel(s) in V. SOURce:DIGital:BERT[:MODE] Enables or disables the Bit Error Rate Test (BERT) mode. SOURce: DIGital: BERT: PATTern: Sets the pattern category of the Bit Error Rate Test (BERT). CATegory <category>

SCPI Command Summary

Source:DIGital:BERT:WCONstan t:TYPE <type>, (@<channel specified channel(s).

Source:DIGital:BERT:PSEudora ndom:SEED <seed>, (@<channel channel(s).

Source:DIGital:BERT:WCONstan tist>)

Source:DIGital:BERT:WCONstan tist>)

Source:DIGital:BERT:WCONstan tist>)

Source:DIGital:BERT:WCONstan tist>)

Source:DIGital:BERT:WCONstan tist>)

Source:DIGital:BERT:WCONstan tist>)

SOURce: DIGital: BERT: DURation Sets the duration of the bit error rate test (BERT) in seconds.

SOURce:DIGital:BERT:BWIDth Sets the pattern bit width of the bit error rate test <width> Sets the pattern bit width of the bit error rate test

Sense commands

SENSe: VOLTage: RANGe: AUTO Disables or enables autoranging for voltage <mode>, (@<channel list>) measurements for the specified channel(s). SENSe:VOLTage:RANGe[:UPPer] Sets the measurement range for voltage <range>[<unit>], (@<channel</pre> measurements for the specified channel(s) in V. list>) SENSe:MTIMe < measurement Sets the analyzer measurement time. The query time> returns the measurement time. Sets the analyzer AC level detector for the specified SENSe: VOLTage: DETector <detector type>, (@<channel</pre> channel(s). list>) Sets the analyzer measurement function for the SENSe:FUNCtion<j> <function>, (@<channel specified channel(s). list>) SENSe:FUNCtion<j>:UNIT Specifies the unit for the measurement result (which <unit>, (@<channel list>) is obtained using the FETCh command) of the corresponding function for the selected channel(s).

<pre>SENSe:REFerence:IMPedance <impedance>, (@<channel list="">)</channel></impedance></pre>	Sets the reference impedance for the specified channel(s) in ohms (Ω).
<pre>SENSe:REFerence:LEVel <level>, (@<channel list="">)</channel></level></pre>	Sets the reference level for the specified channel(s) in V.
SENSe:REFerence:CHANnel <reference channel=""></reference>	Sets the reference channel for the phase or crosstalk measurement functions.
<pre>SENSe:REFerence:FREQuency <frequency>, (@<channel list="">)</channel></frequency></pre>	Sets the reference frequency for the specified channel(s) in Hz (Hertz).
SENSe:REFerence:RATio <ratio>, (@<channel list="">)</channel></ratio>	Sets the reference ratio for the specified channel(s) in dB.
SENSe:REFerence:MEASured <measurement type="">,<source channel=""/>, <@target channel list></measurement>	Sets the last measurement result obtained from the specified measurement type of the selected source as the reference value for the corresponding target channels.
<pre>SENSe:FILTer:LPASs <low filter="" pass="">, (@<channel list="">)</channel></low></pre>	Sets the low pass filter for the specified channel(s).
<pre>SENSe:FILTer:HPASs <high filter="" pass="">, (@<channel list="">)</channel></high></pre>	Sets the high pass filter for the specified channel(s).
<pre>SENSe:FILTer:WEIGhting <weighting filter="">, (@<channel list="">)</channel></weighting></pre>	Sets the weighting filter for the specified channel(s).
SENSe:FILTer:LEFT <left filter=""></left>	Sets the HP8903B mode left filter.
SENSe:FILTer:RIGHt <right filter=""></right>	Sets the HP8903B mode right filter.
SENSe:AVERaging:MOVing: POINts <number of="" points=""></number>	Controls the number of points to be included in the moving average.
SENSe:AVERaging:SYNC:POINts <number of="" points=""></number>	Sets the number of points for the synchronous averaging.

SCPI Command Summary

SENSe:WAVeform:POINts <number of="" points=""></number>	Sets the number of data points to acquire with the FETCh: ARRAy? command.
SENSe:FFT:WINDow <type></type>	Sets the window function for frequency domain analysis.
<pre>SENSe:FUNDamental:FREQuency: LOCK <type>, (@<channel list="">)</channel></type></pre>	Sets the fundamental frequency lock type for SINAD, THD+N Ratio, or THD+N Level measurement.
SENSe: THDN: NOTCh: BANDwidth	Sets the determination method for the notch filter bandwidth used for the SINAD or THD+N measurement for the specified channel(s).
SENSe: SNR: DELay	Sets the signal-to-noise ratio (SNR) measurement delay for the specified channel(s) in milliseconds.
SENSe:SOURce:INTerface	Sets the source interface of the Noise level and SNR measurements for the specified channel(s) of the analog analyzer.
SENSe:SOURce:CHANnel	Sets the source channel of the Noise level and SNR measurements for the specified channel(s) of the analog analyzer.
SENSe:DIGital:FUNDamental:FR EQuency:LOCK[:SINad]	Sets the fundamental frequency lock type for SINAD, THD+N Ratio, or THD+N Level for digital analyzer measurement.
SENSe:DIGital:FUNDamental:FR EQuency:LOCK:THD	Sets the fundamental frequency lock type for THD Ratio or THD Level for digital analyzer measurement.
SENSe:DIGital:FUNDamental:FR EQuency	Sets the custom fundamental frequency value for SINAD, THD+N Ratio, or THD+N Level digital analyzer measurement.
SENSe:DIGital:THD:HARMonic:COUNt	Sets the number of harmonics for the THD Ratio and THD Level digital analyzer measurement.
<pre>SENSe:DIGital:COUPling <coupling>, (@<channel list="">)</channel></coupling></pre>	Sets the coupling mode of the embedded digital analyzer audio signal for the selected channel(s).
SENSe:DIGital:SAMPle:SIZE <sample size=""></sample>	Sets the acquisition data size of the digital analyzer audio signal to be analyzed.

<pre>SENSe:DIGital:VOLTage:DETect or <detector type="">, (@<channel list="">)</channel></detector></pre>	Sets the digital analyzer AC level detector for the specified channel(s).
<pre>SENSe:DIGital:FILTer:LPASs <low filter="" pass="">, (@<channel list="">)</channel></low></pre>	Sets the low pass filter for the specified channel(s).
<pre>SENSe:DIGital:FILTer:HPASs <high filter="" pass="">, (@<channel list="">)</channel></high></pre>	Sets the high pass filter for the specified channel(s).
<pre>SENSe:DIGital:FILTer:WEIGhti ng <weighting filter="">, (@<channel list="">)</channel></weighting></pre>	Sets the weighting filter for the specified channel(s).
<pre>SENSe:DIGital:FILTer:DEEMpha sis <de-emphasis>, (@<channel list="">)</channel></de-emphasis></pre>	Sets the de- emphasis condition for the specified channel(s).
<pre>SENSe:DIGital:FILTer:SRATe <sampling rate="">, (@<channel list="">)</channel></sampling></pre>	Sets the filter sampling rate for the specified channel(s).
<pre>SENSe:DIGital:FUNCtion<j> <function>, (@<channel list="">)</channel></function></j></pre>	Sets the digital analyzer measurement function for the specified channel(s).
<pre>SENSe:DIGital:FUNCtion<j>:UN IT <unit>, (@<channel list="">)</channel></unit></j></pre>	Specifies the unit for the measurement result (which is obtained using the FETCh command) of the corresponding function for the selected channel(s).
<pre>SENSe:DIGital:REFerence:LEVe 1 <level>, (@<channel list="">)</channel></level></pre>	Sets the reference level for the specified channel(s) in V.
<pre>SENSe:DIGital:REFerence:FREQ uency <frequency>, (@<channel list="">)</channel></frequency></pre>	Sets the reference frequency for the specified channel(s) in Hz (Hertz).
<pre>SENSe:DIGital:REFerence:RATi o <ratio>, (@<channel list="">)</channel></ratio></pre>	Sets the reference ratio for the specified channel(s) in dB.
<pre>SENSe:DIGital:REFerence: Voltage <fs voltage="">, (@<channel list="">)</channel></fs></pre>	Sets the full scale (FFS) voltage for the specified channel(s) in V.

SCPI Command Summary

SENSe:DIGital:REFerence:CHAN nel <reference channel=""></reference>	Sets the reference channel for the phase or crosstalk measurement functions.
<pre>SENSe:DIGital:REFerence:MEAS ured <measurement type="">, <source channel=""/>, <@target channel list></measurement></pre>	Sets the last measurement result obtained from the specified measurement type of the selected source as the reference value for the corresponding target channels.
SENSe:DIGital:AVERaging:MOVing:POINts <number of="" points=""></number>	Controls the number of points to be included in the moving average.
SENSe:DIGital:AVERaging:SYNC:POINts <number of="" points=""></number>	Sets the number of points for the synchronous averaging.
SENSe:DIGital:SNR:DELay <delay></delay>	Sets the signal-to-noise ratio (SNR) measurement delay in milliseconds.
SENSe:DIGital:SOURce:INTerface	Sets the source interface of the Noise level and SNR measurements for the specified channel(s) of the digital analyzer.
SENSe:DIGital:SOURce:CHANnel	Sets the source channel of the Noise level and SNR measurements for the specified channel(s) of the digital analyzer.
<pre>SENSe:DIGital:THDN:MODE <mode>, (<@<channel list="">)</channel></mode></pre>	Sets the THD+N measurement mode for digital analyzer.
SENSe:DIGital:FFT:WINDow <type></type>	Sets the window function for frequency domain analysis.
SENSe:DIGital:WAVeform:POINt s <number of="" points=""></number>	Sets the number of data points to acquire with the FETCh:ARRAy? command.
<pre>SENSe:DIGital:BERT:INTerval <reading interval=""></reading></pre>	Sets the reading interval of the pattern for the Bit Error Rate Test (BERT) in seconds.
SENSe:DIGital:BERT:UNIT <bit width=""></bit>	Sets the unit of the Total Error and Total Bits for the Bit Error Rate Test (BERT).
SENSe:NOTCh:EMULation[:STATe]	Enables or disables the notch emulation for the analog analyzer for the specified channel(s).

Display commands

Sets the graph display as either time domain, DISPlay: ANALysis: MODE < mode>

frequency domain (magnitude), or frequency domain

(phase).

DISPlay[:WINDow]:GRAPh:

Sets the X-axis spacing as either linear or log.

TRACe:X:SPACing <spacing type>

DISPlay[:WINDow]:GRAPh: Performs an autoscale on the X-axis to automatically TRACe:X[:SCALe]:AUTO

scale the graph display according to the signal each

Sets the value represented by the minimum (left)

time this command is sent.

DISPlay[:WINDow]:GRAPh:

TRACe:X[:SCALe]:LEFT edge of the X-axis.

<minimum limit>

DISPlay[:WINDow]:GRAPh: Sets the value represented by the maximum (right)

edge of the X-axis. TRACe:X[:SCALe]:RIGHt

<maximum limit>

DISPlay[:WINDow]:GRAPh: Sets the Y-axis spacing as either linear or log.

TRACe: Y: SPACing <spacing type>

Performs an autoscale on the Y-axis to automatically DISPlay[:WINDow]:GRAPh:

TRACe:Y[:SCALe]:AUTO scale the graph display according to the signal each

time this command is sent.

DISPlay[:WINDow]:GRAPh: Sets the value represented by the minimum (bottom)

TRACe:Y[:SCALe]:BOTTom edge of the Y-axis.

<minimum limit>

DISPlav[:WINDow]:GRAPh: Sets the value represented by the maximum (top)

edge of the Y-axis. TRACe:Y[:SCALe]:TOP <maximum

limit>

TRACe: AUTO

DISPlay[:WINDow]:GRAPh: Performs an autoscale to automatically scale the

graph display according to the signal each time this

command is sent.

SCPI Command Summary

<pre>DISPlay[:WINDow]:GRAPh:TRACe :HOLD <hold type="">, (@<channel>)</channel></hold></pre>	Sets the hold configuration for the specified channel(s).
<pre>DISPlay[:WINDow]:GRAPh:TRACe :REFerence:STATe <state></state></pre>	Enables or disables the reference trace in the graph mode.
<pre>DISPlay[:WINDow]:GRAPh:TRACe :REFerence:SLOT <slot number=""></slot></pre>	Sets the reference trace slot in the graph mode.
<pre>DISPlay:[:WINDow]:GRAPh:TRAC e:REFerence:SOURce <source type=""/>, <filename></filename></pre>	Sets the source for the current reference trace slot.
<pre>DISPlay[:WINDow]:SWEep:TRACe :X:SPACing <spacing type=""></spacing></pre>	Sets the X-axis spacing as either linear or log for the sweep.
<pre>DISPlay[:WINDow]:SWEep: TRACe:X[:SCALe]:AUTO</pre>	Performs an autoscale on the X-axis of the sweep plot to automatically scale the sweep plot according to the signal each time this command is sent.
<pre>DISPlay[:WINDow]:SWEep: TRACe:X[:SCALe]:LEFT <minimum limit=""></minimum></pre>	Sets the value represented by the minimum (left) edge of the X-axis of the sweep plot.
<pre>DISPlay[:WINDow]:SWEep: TRACe:X[:SCALe]:RIGHt <maximum limit=""></maximum></pre>	Sets the value represented by the maximum (right) edge of the X-axis of the sweep plot.
<pre>DISPlay[:WINDow]:SWEep: TRACe:Y:SPACing <spacing type=""></spacing></pre>	Sets the Y-axis spacing as either linear or log for the sweep.
<pre>DISPlay[:WINDow]:SWEep: TRACe:Y[:SCALe]:AUTO</pre>	Performs an autoscale on the Y-axis of the sweep plot to automatically scale the sweep plot according to the signal each time this command is sent.
<pre>DISPlay[:WINDow]:SWEep: TRACe:Y[:SCALe]:BOTTom <minimum limit=""></minimum></pre>	Sets the value represented by the minimum (bottom) edge of the Y-axis of the sweep plot.
<pre>DISPlay[:WINDow]:SWEep: TRACe:Y[:SCALe]:TOP <maximum limit=""></maximum></pre>	Sets the value represented by the maximum (top) edge of the Y-axis of the sweep plot.

DISPlay[:WINDow]:SWEep: Performs an autoscale on the sweep plot to TRACe: AUTO automatically scale the sweep plot according to the signal each time this command is sent. DISPlay[:WINDow]:SWEep:TRACe Sets the hold configuration for the specified channel(s). : HOLD DISPlay[:WINDow]:SWEep:TRACe Sets the current function in sweep mode. :FUNCtion <function number> Enables or disables the current reference trace in DISPlay[:WINDow]:SWEep:TRACe :REFerence:STATe <state> sweep mode. DISPlay[:WINDow]:SWEep:TRACe Sets the reference trace slot in sweep mode. :REFerence:SLOT <slot. number> DISPlay:[:WINDow]:SWEep:TRAC Sets the source for the current reference trace slot. e:REFerence:SOURce <source type>, <filename> DISPlay[:WINDow]:VIEW Sets the front panel LCD display type for the <view>, <panel>, [<channel>] specified channel. DISPlay[:WINDow]:MODE Sets the display mode of the front panel display. <display mode> DISPlay[:WINDow]:STATe Enables or disables the front panel LCD backlight. <state> DISPlay:DIGital:ANALysis:MOD Sets the graph to display the magnitude of the signal E <mode> in frequency domain, phase in the frequency domain, or waveform in the time domain for the digital card options. Sets the hold configuration for the specified DISPlay[:WINDow]:DIGital:GRA Ph:TRACe:HOLD <hold type>, channel(s). (@<channel>) DISPlay[:WINDow]:GRAPh:TRACe Sets the interface type to be displayed in the graph :INTerface <interface type> mode.

Calculate commands

CALCulate: HARMonic: COUNt Sets the number of signal harmonic components in the frequency domain (magnitude) display. <count> CALCulate: HARMonic: Returns the signal fundamental frequency in Hz for FUNDamental? (@<channel>) the specified channel. CALCulate: HARMonic: VALue? Returns the harmonic component results of the trace for the specified channel. (@<channel>) CALCulate: HARMonic: Returns the signal harmonic frequency values for the specified channel. FREQuencies? (@<channel>) CALCulate: THDistortion? Returns the Total Harmonic Distortion (THD) value <unit>, (@<channel>) of the input signal in the specified unit for the selected channel. CALCulate: DIGital: HARMonic: C Sets the number of signal harmonic components in OUNt <count> the frequency domain (magnitude) display. CALCulate:DIGital:HARMonic:F Returns the signal fundamental frequency in Hz for UNDamental? (@<channel>) the specified channel. CALCulate: DIGital: HARMonic: V Returns the harmonic component results of the trace ALue? (@<channel>) for the specified channel. Returns the signal harmonic frequency values for the CALCulate:DIGital:HARMonic:F REOuencies? (@<channel>) specified channel. CALCulate: DIGital: THDistorti Returns the Total Harmonic Distortion (THD) value on? <unit>, (@<channel>) of the input signal in the specified unit for the selected channel. CALCulate: GRAPh: MARKer: THRes Sets the threshold level that the marker can identify hold[:LEVel] <threshold as a peak or minimum on the graph display in the 1eve1> graph mode. CALCulate: GRAPh: MARKer: THRes Turns on or off the threshold on the graph display hold:STATe <threshold state> in the graph mode.

<state>

CALCulate: GRAPh: MARKer

[1] |2|3|4|5|6|7|8:STATe

Turns on or off the selected marker on the graph

display in the graph mode.

CALCulate:GRAPh:MARKer [1]|2|3|4|5|6|7|8:TRACe <trace no>

CALCulate:GRAPh:MARKer [1]|2|3|4|5|6|7|8:X <x position>

CALCulate:GRAPh:MARKer [1] | 2 | 3 | 4 | 5 | 6 | 7 | 8:Y?

CALCulate:GRAPh:MARKer [1]|2|3|4|5|6|7|8:PEAK <direction>

CALCulate:GRAPh:MARKer [1]|2|3|4|5|6|7|8:MIN <direction>

CALCulate:GRAPh:MARKer
[1]|2|3|4|5|6|7|8:REFerence
<reference marker no>

CALCulate:GRAPh:MARKer [1]|2|3|4|5|6|7|8:XDELta?

CALCulate:GRAPh:MARKer [1]|2|3|4|5|6|7|8:YDELta?

CALCulate:GRAPh:MARKer
[1]|2|3|4|5|6|7|8:MOVement
<movement characteristic>

CALCulate:GRAPh:MARKer
[1]|2|3|4|5|6|7|8[:SET]:
MODE <marker mode>

CALCulate:SWEep:MARKer:THRes
hold[:LEVel] <threshold
level>

Assigns the marker to the trace of the specified channel on the graph display in the graph mode.

Sets the marker X-axis value on the graph display in the graph mode.

Returns the marker Y-axis value on the graph display in the graph mode.

Searches for the peak value of the trace data by placing the specified marker at either the left or right peak of the graph display in the graph mode.

Searches for the minimum value of the trace data by placing the specified marker at either the left or right minimum of the graph display in the graph mode.

Sets the reference marker for the selected marker on the graph display in the graph mode.

Returns the difference in the X-axis value between the selected marker and its reference marker on the graph display in the graph mode.

Returns the difference in the Y-axis value between the selected marker and its reference marker on the graph display in the graph mode.

Sets the marker movement characteristic of either single or in pair on the graph display in the graph mode.

Positions the marker at either the start, stop, center points of the graph, or expands the area between the selected marker and its reference marker in the graph mode.

Sets the threshold level that the marker can identify as a peak or minimum on the graph display in the sweep mode.

SCPI Command Summary

CALCulate:SWEep:MARKer:THRes
hold:STATe <threshold state>

CALCulate:SWEep:MARKer
[1]|2|3|4|5|6|7|8:STATe
<state>

CALCulate:SWEep:MARKer [1] | 2 | 3 | 4 | 5 | 6 | 7 | 8:TRACe?

CALCulate:SWEep:MARKer [1]|2|3|4|5|6|7|8:X <x position>

CALCulate:SWEep:MARKer [1] | 2 | 3 | 4 | 5 | 6 | 7 | 8:Y?

CALCulate: SWEep: MARKer [1] | 2 | 3 | 4 | 5 | 6 | 7 | 8: PEAK < direction>

CALCulate:SWEep:MARKer [1]|2|3|4|5|6|7|8:MIN <direction>

CALCulate:SWEep:MARKer
[1]|2|3|4|5|6|7|8:REFerence
<reference marker no>

CALCulate:SWEep:MARKer [1] | 2 | 3 | 4 | 5 | 6 | 7 | 8:XDELta?

CALCulate:SWEep:MARKer [1] | 2 | 3 | 4 | 5 | 6 | 7 | 8:YDELta?

CALCulate:SWEep:MARKer
[1]|2|3|4|5|6|7|8:MOVement
<movement characteristic>

Turns on or off the threshold on the graph display in the sweep mode.

Turns on or off the selected marker on the graph display in the sweep mode.

Assigns the marker to the trace of the specified channel on the graph display in the sweep mode.

Sets the marker X-axis value on the graph display in the sweep mode.

Returns the marker Y-axis value on the graph display in the sweep mode.

Searches for the peak value of the trace data by placing the specified marker at either the left or right peak of the graph display in the sweep mode.

Searches for the minimum value of the trace data by placing the specified marker at either the left or right minimum of the graph display in the sweep mode.

Sets the reference marker for the selected marker on the graph display in the sweep mode.

Returns the difference in the X-axis value between the selected marker and its reference marker on the graph display in the sweep mode.

Returns the difference in the Y-axis value between the selected marker and its reference marker on the graph display in the sweep mode.

Sets the marker movement characteristic of either single or in pair on the graph display in the sweep mode.

Positions the marker at either the start, stop, center

specified channel(s) for ratio measurement function such as SINAD and THD Ratio, DFD, IMD, crosstalk,

[1] |2 |3 |4 |5 |6 |7 |8 [:SET]: points of the graph, or expands the area between the MODE <marker mode> selected marker and its reference marker in the sweep mode. CALCulate: FORMat: LEVel Sets the format of the measurement data for the specified channel(s) for level measurement function <format>, (@<channel>) such as Vac, Vdc, THD+N Level, and Noise Level. CALCulate: FORMat: FREQuency Sets the format of the measurement data for the <format>, (@<channel>) specified channel(s) for frequency measurement function. Sets the format of the measurement data for the CALCulate: FORMat: RATio <format>, (@<channel>) specified channel(s) for ratio measurement function such as SINAD and THD Ratio, DFD, IMD, crosstalk, and SNR. CALCulate: DIGital: FORMat: LEV Sets the format of the measurement data for the el <format>, (@<channel>) specified channel(s) for level measurement function such as Vac, Vdc, and Noise Level. CALCulate: DIGital: FORMat: FRE Sets the format of the measurement data for the Quency <format>, specified channel(s) for frequency measurement (@<channel>) function. CALCulate:DIGital:FORMat:RAT Sets the format of the measurement data for the

Data commands

DATA:SWEep <data></data>	Downloads the 32-bit floating point sweep data into the U8903A internal sweep memory.
<pre>DATA:WAVeform <vpeak>, <dc offset="">, <data></data></dc></vpeak></pre>	Downloads the 32-bit floating point arbitrary waveform data into the U8903A internal waveform memory.

and SNR.

io <format>, (@<channel>)

CALCulate: SWEep: MARKer

SCPI Command Summary

DATA: WAVFile <data>

Downloads a Microsoft compatible .wav file to the digital generator buffer.

DATA:FILTer <filter category>, <no. of section>, <no. of group delay>, <data> Downloads the 32-bit floating point user-defined filter data into the U8903A volatile memory allocated for the user-defined filter coefficients.

DATA:DIGital:FILTer <filter category>, <no. of section>, <no. of group delay>, <data>

Downloads the 32-bit floating point user-defined filter data into the U8903A volatile memory allocated for the user-defined filter coefficients.

DATA:FILE? <filename>, <data>

Uploads a file into the U8903A temporary folder.

Sweep commands

SOURce: SWEep: INTerface

<interface>

Sets the sweep interface.

SOURce: SWEep: CHANnel

<channel>

Sets the channel to perform sweep.

SOURce: SWEep: REFerence: CHANn

el <channel>

Sets the reference channel to perform sweep.

SOURce: SWEep: MODE < mode > ,

(@<channel>)

Sets the sweep or list mode for the specified

channel.

SOURce: SWEep: PARameter <sweep parameter>,

(@<channel>)

Sets the parameter to sweep for the specified channel.

SOURce: SWEep: DWELl < delay>,

(@<channel>)

Sets the sweep dwell time (ms) for the specified channel.

SOURce: SWEep: SPACing <spacing>, (@<channel>) Sets either linear or log interval for the sweep of the specified channel.

SOURce: SWEep: POINts <points>, (@<channel>) Sets the number of sweep points for the specified channel.

Sets the step size of the linear sweep interval, or SOURce: SWEep: STEP < step>, (@<channel>) multiplier factor of the log sweep interval for the specified channel. SOURce:SWEep:STARt <start>, Sets the sweep start point for the specified channel. (@<channel>) Sets the sweep stop point for the specified channel. SOURce: SWEep: STOP < stop>, (@<channel>) Jumps to the next sweep point in the Manual Sweep SOURce: SWEep: NEXT or Manual List sweep mode. Returns the values of the sweep points for the SENSe: SWEep: VALues? (@<channel>) specified channel. SENSe: SWEep: INTerface Sets the sweep interface.

SENSe: SWEep: CHANnel Sets the analyzer channel to perform sweep.

<channel>

<interface>

SENSe: SWEep: REFerence: CHANne

1 <channel>

Sets the analyzer reference channel to perform

sweep.

Trigger commands

TRIGger: ANALyzer: SOURce Sets the analyzer trigger source for the input signals.

<trigger source>

TRIGger:GRAPh:SOURce Sets the graph trigger source for the input signals.

<trigger source>

TRIGger: GRAPh: SLOPe <edge> Sets the rising or falling edge of the signal to be

triggered.

TRIGger:DIGital:ANALyzer:SOU

Rce <trigger source>

Sets the digital analyzer trigger source for the input

signals.

SCPI Command Summary

TRIGger:DIGital:GRAPh:SOURce

<trigger source>

Sets the graph trigger source for the input signals.

TRIGger:DIGital:GRAPh:SLOPe
<edge>

Sets the rising or falling edge of the signal to be triggered.

Fetch commands

FETCh[:SCALar]? <function>,
(@<channel list>)

FETCh:ARRay? (@<channel>)

FETCh: SWEep?

FETCh:DIGital[:SCALar]?
<function>, (@<channel
list>)

FETCh:DIGital:AUDIO:BITS?
<bit type>, (@<channel
list>)

FETCh:DIGital:ERRor:FLAG?
<error flag>[,<error
flag>[,<error flag>...]]

FETCh:DIGital:DELay?

FETCh:DIGital:BERT? <type>,
 (@<channel list>)

FETCh:DIGital:ARRay?
(@<channel>)

Retrieves the measurement result for the specified measurement function and channel(s).

Returns an array of measurement data of the selected channel(s).

Returns the sweep result for the channel specified in the SOURce: SWEep: CHANnel command.

Retrieves the measurement result for the specified measurement function and channel(s).

Queries the data bits or active bits of the embedded data in the digital signal audio word for each subframe.

Queries the error flag(s) of the embedded audio data.

Queries the time delay between the digital input and output in milliseconds.

Queries the total bits, total errors, or bit error rate in the Bit Error Rate Test (BERT).

Returns an array of measurement data of the selected channel(s).

Initiate commands

<pre>INITiate[:IMMediate]: ANALyzer (@<channel list="">)</channel></pre>	Initiates the analyzer measurement trigger system for the specified channel(s).
<pre>INITiate[:IMMediate]:GRAPh (@<channel list="">)</channel></pre>	Initiates the graph trigger system for an array of data for the specified channel(s).
<pre>INITiate[:IMMediate]:SWEep</pre>	Initiates the sweep for the channel specified in the SOURce: SWEep: CHANnel command.
<pre>INITiate[:IMMediate]:DIGital :ANALyzer (@<channel list="">)</channel></pre>	Initiates the digital analyzer measurement trigger system for the specified channel(s).
<pre>INITiate[:IMMediate]:DIGital :AUDio:BITS (@<channel list="">)</channel></pre>	Initiates the digital analyzer audio bits measurement for the specified channel(s).
<pre>INITiate[:IMMediate]:DIGital :BERT</pre>	Starts the Bit Error Rate Test (BERT).
<pre>INITiate[:IMMediate]:DIGital :GRAPh (@<channel list="">)</channel></pre>	Initiates the graph trigger system for an array of data for the specified channel(s).
<pre>INITiate:CONTinue:ANALyzer <state>, (@<channel list="">)</channel></state></pre>	Enables or disables the analyzer to make continuous measurement.
<pre>INITiate:CONTinue:DIGital:AN ALyzer <state>, (@<channel list="">)</channel></state></pre>	Enables or disables the digital analyzer to make continuous measurement.
<pre>INITiate:CONTinue:DIGital:AU Dio:BITS <state>, (@<channel list="">)</channel></state></pre>	Enables or disables the digital analyzer to make continuous audio bits measurement.
<pre>INITiate:CONTinue:DIGital:DE Lay <state></state></pre>	Starts or Stops the digital analyzer to make continuous time delay measurement.

SCPI Command Summary

Abort commands

ABORt: ANALyzer Cancels any initiated analyzer measurement trigger

and returns the trigger state to Idle.

ABORt: GRAPh Cancels any initiated measurement trigger for an

array of graph points and returns the trigger state to

Idle.

ABORt: SWEep Cancels any initiated measurement trigger for sweep

and returns the trigger state to Idle.

ABORt:DIGital:ANALyzer Cancels any initiated digital analyzer measurement

trigger and returns the trigger state to Idle.

ABORt:DIGital:GRAPh Cancels any initiated array of graph points

measurement trigger and returns the trigger state to

Idle.

ABORT: DIGital: BERT Stops the Bit Error Rate Test (BERT).

Mass Memory commands

MMEMory:LOAD <label>,

<filename>

Loads the 32-bit floating point data from a file into the U8903A.

MMEMory:STORe <label>,

<filename>

Stores the 32-bit floating point data to a file in either the U8903A internal storage or a USB external

flash storage.

MMEMory: CATalog? < location>,

<directory>

Returns the memory usage information (total amount of storage currently used and free space available) in bytes and a list of files and directories in a specified

parent directory.

MMEMory:DELete <location>,

<directory>, <filename>

Deletes the specified file in the selected directory.

Loads a Microsoft compatible .wav file to the digital MMEMory:LOAD:WAVFile <filename> generator buffer. MMEMory:LOAD:AES:STATus Loads the channel status and user bits information <filename> for digital generator from a file. MMEMory:STORe:AES:STATus Stores the channel status and user bits information <module>, <file format>, of the digital generator or analyzer to a file. <filename>, (@<channel list>) MMEMory:LOAD:STATe:PUP Sets the power-up state of the U8903A. <power-up state> Stores the measured sweep data points from memory MMEMory:STORe:SWEep <channel>, <function>, to a file. <filename> Loads the specified state file to the selected U8903A MMEMory:LOAD:STATe[:MODE] <location>, mode. <system mode>, <filename> MMEMory:LOAD:STATe:CHANnel Loads the specified single channel state file to the selected U8903A mode channel. <location>, <system mode>, (@<channel</pre> list>), <filename> Stores the current U8903A state to a file in either MMEMory:STORe:STATe[:MODE] <location>, the internal storage or a USB external flash storage. <system mode>, <filename> MMEMory:STORe:STATe:CHANnel Stores the current U8903A single channel state to a <location>, file in either the internal storage or a USB external

flash storage.

<system mode>, (@<channel>),

<filename>

Measure commands

MEASure:DIGital:CSTatus:DATA Retrieves the 24 bytes of the channel status bytes. ? (@<channel list>) MEASure:DIGital:CSTatus:BYTE Retrieves a particular byte of the channel status bytes in hexadecimal characters. ? <byte number> (@<channel</pre> list>) MEASure:DIGital:CSTatus:FIEL Retrieves the channel status bytes field value of a d? <field name>, (@<channel particular field name for the specified channel. list>) MEASure: DIGital: USTatus: DATA Retrieves the 24 bytes of the user status bytes. ? (@<channel list>) MEASure: DIGital: USTatus: BYTE Retrieves a particular byte of the user status bytes in hexadecimal characters. ? <byte number> (@<channel</pre> list>)

Status commands

STATus: PRESet	Sets all defined bits in the status system PTR registers and clears all bits in the NTR and enable registers.
STATus: OPERation: CONDition?	Queries the condition register for the Standard Operation register group and returns the binary-weighted sum of all bits set in the register.
STATus:OPERation:ENABle <enable value=""></enable>	Enables the bits in the enable register for the Standard Operation register group.
STATus:OPERation[:EVENt]?	Queries the event register for the Standard Operation register group and returns the binary-weighted sum of all bits set in the register.
STATus:OPERation: NTRansition <value></value>	Sets and reads the value of the Operation Negative-Transition (NTR) register.

STATus: OPERation: Sets and reads the value of the Operation PTRansition < value> Positive-Transition (PTR) register. STATus: OUEStionable: Queries the condition register for the Questionable CONDition? Data register group and returns the binary-weighted sum of all bits set in the register. STATus: OUEStionable: ENABle Enables the bits in the enable register for the <enable value> Questionable Data register group. Queries the event register for the Questionable Data STATus:OUEStionable[:EVENt]? register group and returns the binary-weighted sum of all bits set in the register. Sets and reads the value of the Questionable STATus: QUEStionable: NTRansition < value> Negative-Transition (NTR) register. STATus: OUEStionable: Sets and reads the value of the Questionable Positive-Transition (PTR) register. PTRansition <value> STATus: QUEStionable: Queries the condition register for the Questionable VOLTage: CONDition? Voltage register group and returns the binary-weighted sum of all bits set in the register. STATus: OUEStionable: Enables the bits in the enable register for the VOLTage: ENABle < enable Questionable Voltage register group. value> STATus: OUEStionable: VOLTage[Queries the event register for the Questionable Voltage register group and returns the :EVENtl? binary-weighted sum of all bits set in the register. Sets and reads the value of the Questionable Voltage STATus: QUEStionable:

Negative-Transition (NTR) register.

Positive-Transition (PTR) register.

Sets and reads the value of the Questionable Voltage

VOLTage:NTRansition <value>

VOLTage: PTRansition < value>

STATus: OUEStionable:

THIS PAGE HAS BEEN INTENTIONALLY LEFT BLANK.	

2

SCPI Command Summary SCPI Command Summary

The U8903A SCPI command errors are summarized in this chapter. $\,$

3 Error Messages Error Messages

Error Messages

Error messages are created once a command error or an erroneous condition has been detected.

- Errors are retrieved in the first-in-first-out (FIFO) order. The first error returned is the first error that has been stored.
- If more than 30 errors have occurred, the last error stored in the queue (the most recent error) is replaced with -350,"Error queue overflow". No additional errors are stored until you remove all the errors from the queue. If no error occurs when you read the error queue, the U8903A responds with 0,"No error".
- The error queue is cleared by the clear status (*CLS) command or when power is cycled. The errors are also cleared when you read the queue. The error queue is not cleared by a factory reset (*RST) command or an instrument preset (SYSTem: PRESet) command.
- The error string may contain up to 255 characters and consists of an error number and an error string enclosed in double quotes.

For example: -113,"Undefined header"

Error List

Missing parameter

Error code	Error message
-109	No arbitrary points is loaded for channel $\{0\}$ due to the missing file

Block data error

Error code	Error message
-160	The number of data points for array measured voltages exceeds the maximum of 200
-160	The number of data points array measured voltages is less than the minimum of 1

Execution error

-200 -200 -200 -200	The file name " <file name="">" does not exist The file "<file name="">" has exceeded the maximum size of 5 MB The file "<file name="">" is not in the valid WAVE file format The function2 (<measurement function="">) of analyzer channel</measurement></file></file></file>
-200	The file " <file name="">" is not in the valid WAVE file format</file>
-200	The function2 (<measurement function="">) of analyzer channel</measurement>
	<channel no=""> does not support <hp8903b command=""> command</hp8903b></channel>
-200	Left/Right filter not set
-200	Invalid channel
-200	Invalid channel; value set to <valid channel=""></valid>
-200	Function <name> does not support unit <unit></unit></name>
-200	The selected channel is not in the initiated channel list
-200	Analyzer measurement has been aborted
-200	Graph measurement has been aborted

3 Error Messages

Error Messages

Error code	Error message
_200	·
	No pre-stored coefficients are available
-200	{ <parameter type="">} is not valid in one or more waveforms for the selected channels.</parameter>
-200	This command is not valid in one or more waveforms for the selected channels
-200	Waveform at channel {0} does not contain tone {1}
-200	Trigger slope setting is only applicable when the trigger source is $\text{Ch1}{\sim}2$
-200	Failed to parse the file. Please make sure it is a valid XML file
-200	The < filename> does not exist
-200	Path is not specified
-200	Not supported for this input connector type
-200	Command cannot be executed in pseudo random mode
-200	Command cannot be executed in walking constant mode
-200	Command cannot be executed in pseudo random mode
-200	Harmonic Analysis is only valid when Graph Analysis mode is Magnitude (Frequency Domain)
-200	A file with the same name of the directory already exists
-200	The destination is a directory
-200	Import wave file failed
-200	This command is not applicable to Graph Mode
-200	The filter type is missing or invalid
-200	The group delay is missing or invalid
-200	The filter coefficients are missing
-200	Invalid number of section
-200	No points available
-200	Waveform points are empty
-200	Sweep data is empty

Error code	Error message
-200	This command is not applicable to Sweep Mode
-200	This command is not applicable to Digital Generator Mode
-200	The loaded points are insufficient (minimum 32 points) to generate the arbitrary waveform
-200	This command is not applicable for the AANalyzer mode
-200	This command cannot be executed in HP8903B mode
-200	Only 1 channel is allowed
-200	Invalid channel format
-200	Invalid {0} list format
-200	Changing sweep channel is not allowed while sweeping is in progress
-200	Changing sweep reference channel is not allowed while sweeping is in progress
-200	Changing trigger source is not allowed while instrument is in the waiting for trigger or measuring state
-200	One or more of the values is missing or duplicated, they have been set to value 0 accordingly

Parameter error

Error code	Error message
-220	Import wave file failed
-220	Not a valid choice

Settings conflict

Error code	Error message
-221	No measurement value for channel <channel></channel>
-221	No measurement value for channel <channel></channel>
-221	Word length and multiplier are clipped to the value of 32 and 128 respectively
-221	Not applicable when Master Clock Source is Internal and Bit/Frame Clock is In
-221	Waveform <name> of generator ch<channel no=""> is not sweepable</channel></name>
-221	Cannot change parameter while sweep is not in auto mode
-221	Cannot set arbitrary spacing in auto mode
-221	<parameter> setting is not allowed for waveform type <name> at channel <channel number=""></channel></name></parameter>
-221	Parameter <name> not supported by <waveform name=""> waveform of generator ch<channel id=""></channel></waveform></name>
-221	Dwell time must be a positive number
-221	<parameter> setting is not allowed for waveform type <waveform></waveform></parameter>
-221	No pre-loaded wave file
-221	FFS reference voltage must be greater than 0
-221	<parameter> setting is not allowed for waveform type <waveform> at channel <channel id=""></channel></waveform></parameter>
-221	Reference impedance must be greater than 0
-221	Cannot set phase at channel 1 because it is the reference channel. The phase for channel 1 is always 0.
-221	One of the output type for the selected channels is not Balanced. The selected impedance {0} is only applicable to Balanced output type.
-221	One of the output type for the selected channels is not Unbalanced. The selected impedance {0} is only applicable to Unbalanced output type.

Error code	Error message
-221	This setting is only applicable to Balanced input
-221	This setting is only applicable to Unbalanced input
-221	Frequency 1 and 2 cannot be set to the same value for Dual waveform
-221	Pattern switched to Walking 1
-221	Pattern switched to Walking 0
-221	Pattern switched to Custom
-221	Current input type does not support this type of view. Please change to the correct input type.
-221	<number> duplicate frequency at channel <channel> removed. Tone count has been clipped to <new count="" tone="">.</new></channel></number>

3 Error Messages

Error Messages

Data out of range

Error code	Error message
-222	Multiplier is clipped to the minimum value of 16
-222	Multiplier is clipped to the maximum value of 32704
-222	Point index out of range
-222	The value {0} was clipped to the maximum/minimum value of <max min="" value=""> <channel></channel></max>
-222	The <parameter> value of <value> is clipped to maximum/minimum value of <max min="" value=""></max></value></parameter>
-222	<channel>'s <parameter> is clipped to <value></value></parameter></channel>
-222	<field> must be between <lower bound="">~<upper bound=""></upper></lower></field>
-222	Multichannel mode is defined, ChannelNumber must be between $1{\sim}16$
-222	Multichannel mode not defined, ChannelNumber must be between 1~128
-222	Duration/Interval cannot be lower than to 0.1 s
-222	Duration cannot be lower than/equal to interval (= <interval>s)</interval>
-222	Duration cannot be larger than 604.8 ks (1 week)
-222	Interval cannot be larger than/equal to duration (= <duration>s)</duration>
-222	Interval cannot be larger than 1 hour
-222	Value below minimum <value></value>
-222	Value exceeds maximum <value></value>
-222	The value of <value> is below value of <min value=""></min></value>
-222	Number of filter coefficients less than the minimum of 4
-222	Number of filter coefficients exceed the maximum of 256
-222	The number of waveform data is less than the minimum of 32
-222	The number of waveform data exceeds the maximum of 32768
-222	One or more of the values is less than -1 or has exceeded 1, they have been clipped to -1 or 1 accordingly

Error code	Error message
-222	The index number is exceeded the total tones available at channel {0}
-222	Total tones at channel {0} has reached the maximum of 64. No additional tones can be added
-222	The total tones at channel {0} cannot be less than 1
-222	Step size cannot be zero
-222	Channel number must be between 1 and 2
-222	Threshold value is set outside of the grid. The value must be between $\{0\}$ and $\{1\}$
-222	Channel 1 in not a valid choice because it is the reference channel for skew timing
-222	Reference impedance must be greater than 0
-222	Reference level must be greater than 0
-222	Reference frequency must be greater than or equal to 0
-222	Full scale voltage must be greater than 0
-222	The value <user value=""> was clipped to the minimum value of <clipped value=""></clipped></user>
-222	The value <user value=""> was clipped to the maximum value of <clipped value=""></clipped></user>
-222	The value was clipped to the value of <clipped value=""></clipped>
-222	The AES3/SPDIF output has been turned off due to the sampling rate is below/has exceeded the supported range of AES3/SPDIF output.

Illegal parameter value

Error code	Error message
-224	Current measurement functions do not support this reference setting
-224	Unsupported reference type for channel <channel></channel>
-224	Channel <channel>'s functions do not support this reference mode</channel>
-224	Current measurement functions do not support this reference setting
-224	Invalid measurement function
-224	Invalid measurement function for digital/analog
-224	Invalid field name or field value
-224	QPK detector type is not supported
-224	Entered value cannot exceed <limit grid="" value=""></limit>
-224	Entered value cannot be less than limit grid value>
-224	Spacing not applied. Current grid settings not applicable for this spacing
-224	Invalid data format

List not same length

Error code	Error message
-226	The length of the array of measured voltages and frequencies are different

Data corrupt or stale

Error code	Error message
-230	Data not available for command <hp8903b command="" name=""></hp8903b>
-230	Graph data is not available

Error code	Error message
-230	Waveform set to arbitrary but there are no valid points available in channel { <channel number="">}</channel>
-230	Waveform set to arbitrary but there is no valid wave file available

Invalid format

Error code	Error message
-232	The state file contains more than one channel information
-232	Invalid Arbitrary file format

Hardware missing

Error code	Error message
-241	Digital audio card is not present

File name error

Error code	Error message
-257	Invalid file extension

Device specific error

Bit error rate query is running, stop the auto query first
Cannot change setting while sweep is running
SweepSettingsConflict
Burst on cycles must be smaller than burst period
DcOffsetOutOfRange
AmplitudeExceedMax
ValueBelowMin
ValueExceedMax
FileWriteError
FileReadError
InvalidDeviceType
Setting combinations of sampling rate, word length and multiplier are invalid for the clock PLL
DigitalFwUpgradeWrongCRC
DigitalFwUpgradeWrongFileSize
DigitalFwUpgradeWrongOperation
DigitalWrongSamplingRate
DigitalWrongWordlength
DigitalSharcBackupMode
DigitalNiosBackupMode
DigitalWrongResponse
DigitalWrongSize
DigitalWrongCH
DigitalWrongData
DigitalWrongCmd

Error code	Error message
-300	DigitalTimeOut
-300	DigitalHWError
-300	DigitalHWAvailNotWorking
-300	DisplayClockTestFailed
-300	AdcRangeTestFailed
-300	NoiseTestFailed
-300	CommandInWrongMode
-300	AbortNotAllowed
-300	MasterDspTimeOut
-300	CommandAborted
-300	Command not allowed in current auto mode
-300	System not in calibration mode
-300	Clearing calibration data. Please retry later
-300	The AES3/SPDIF's output cannot be turned on due to the current sampling rate is below the minimum/has exceeded the supported range of AES3/SPDIF output
-300	DSI is not supported
-300	AES is not supported
-300	Some Devices cannot be reset
-300	Failed to load <file name=""></file>
-300	Measurement NOISe is not allowed in Sweep
-300	Sense channels not added
-300	Sweep parameter must be frequency when measuring group delay
-300	Sweep aborted at point <point id=""></point>
-300	Current waveform cannot be swept
-300	Current waveform <name> of generator <channel> cannot be swept</channel></name>

3 Error Messages Error Messages

Error code Error message -300 Waveform <name> cannot be swept -300Manual sweep points not loaded -300 Invalid data format for DC offset -300 Invalid data format for Vpeak -300Invalid points format -300 The total points exceeds the limit of 32768 -300 Invalid file format -300Multichannel mode not defined -300 Some of the wave file information is not available -300Wave file cannot be null -300Bit error rate is running, please stop it first -300Delay measurement is running, please stop it first -300 Not in calibration mode -300 Unable to retrieve BNC output cal data -300Unable to retrieve XLR output cal data -300 Wrong card type entered in GraphFeatures.GetGraphEntity -300<HP8903B command> or part of the commands are not supported -300 No clock input. Please check the clock settings and connection.

System error

Error code	Error message
-310	Sweep reset error: <error type=""></error>
-310	Digital card not present
-310	Related hardware not detected. Ensure that it is installed properly.
-310	The values of start and stop cannot be the same
-310	Step Size value cannot be 1 or negative in log spacing
-310	The Start/Stop value cannot be less than 1 in log spacing
-310	Absolute step size value (<value>) is smaller than minimum value (<minimum>)</minimum></value>
-310	Invalid IP address
-310	Invalid Subnet Mask address
-310	Invalid Gateway address
-310	Invalid Primary DNS address
-310	Invalid Secondary DNS address
-310	<ip> is a special IP address and cannot be used here. Please assign another IP address.</ip>
-310	<ip> is a reserved static IP address and cannot be used here. Please assign another IP address.</ip>
-310	Duplicate IP address. The system has detected a conflict for statically assigned IP address. Please assign another IP address.
-310	Error registering name on network (may be duplicate)
-310	The Host cannot be blank
-310	<name> is not a valid hostname</name>
-310	<name> : Two adjacent hyphens are not valid</name>
-310	Invalid IP address. The IP address must be between 0.0.0.0 to 223.255.255.255. Please assigns another IP address.
-310	Invalid filter type

3 Error Messages

Error Messages

Error code	Error message
-310	There is no valid delta value at this current marker position (<value>)</value>
-310	The selected marker index is out of range. Please choose from range 1 to 8.
-310	Feature not removed. Please call *OPT? to verify feature name.
-310	Please provide a valid file path
-310	GPIB Card Not Found
-310	Channel Status Bits information is not available
-310	Directory does not exist
-310	Invalid module value
-310	Current function 2 of channel 1 does not support fundamental frequency lock

Storage fault

Error code	Error message
-320	Load wave file failed

Error messages

Error message
Digital card option not installed
No channel selected
Selected channels do not have any points to save
No Data to be analyzed
Value out of measurement bandwidth
Please turn on sweep control mode to run sweep
Sweep parameter from file do not match with current sweep settings

Error message

Unable to load data points. Please check if the file format is valid.

Sweep must contain at least 1 point

Error Loading Custom Filter File. Incorrect file format.

No valid update found

You cannot perform self test when HP8903B mode is enabled

Please key in the value

The input value is not allowed

The input <Value> <Unit> is out of range. Input was clipped to the <Type> value of <New Value>

The input must between 0 and 255

Day must between 1 and 31

Month must between 1 and 12

Year must between 2000 and 2099

Hour must between 0 and 23

Minute must between 0 and 59

Second must between 0 and 59

Input must be between <minimum value> and <maximum value>

Invalid input, please enter numeric data or select a channel

<Directory Name> does not exist

No USB external flash storage is detected. Please insert a USB external flash storage through USB port.

Do you want to permanently delete <File Name>?

Only file can be deleted

No item in the list

The selected file does not exist

Error Messages

3

Error Messages

Error message
Only file can be recalled
No item in the list
This folder already contains <file name="">. Do you want to overwrite it?</file>
Only file can be transferred
<file name=""> has been successfully exported</file>
<file name=""> has been successfully imported</file>
Invalid file name. Please rename to another file name
No input is assigned to rename current file
Only file can be renamed
Please insert a USB external flash storage
You are capturing graph plot page. Do you want to invert the colors in the plot area?
NOTE: System will become slow for awhile while the system is inverting the image
Please do not remove the USB thumb drive during the inverting process. Another message box will appear once the process is completed.
Insufficient free space
The chosen USB drive has been removed
Please enter value only
No pre-loaded wave file available
No arbitrary points available for the current channel
Current action will overwrite some of the custom values. Continue anyway?
<number> duplicate frequency removed</number>
The number of tones must be between 1 and 64
Are you sure you want to apply the changes ?
Changes have been made to the current multitone settings. Are you sure you want to undo the changes and navigate away?
Unable to perform the preset operation. Please try again.

Error message

The arbitrary waveform points cannot be loaded from file <file name>. Do you want to load the points from other files?

The arbitrary waveform file <file name> cannot be found. Do you want to manually search for the file?

Load arbitrary waveform file <file name> failed. <Exception message from system>

The arbitrary waveform points cannot be loaded for channel <ch>. Do you want to load the points from other files?

The channel <ch> recall is aborted

The filter file contains more than one channel information

Failed to recall state file

The corresponding analyzer filter file is not found. Do you want to manually load the file?

Unable to perform the save operation. Please try again.

The [<key>] key is malfunction or not pressed. Please retry.

There are 5 keys malfunction or not pressed. Please retry.

Failed to set the GPIB address

Invalid GPIB address. The GPIB address must be between 0 and 30.

Failed to set the FTP service control

Failed to save the LAN settings

Failed to reset the LAN settings

General Error. Check log file for more details.

Error(s) occur during the operation

You cannot perform this operation when HP8903B mode is on

File system not found. Please try again.

File system open failed. Please try again.

File system dismount failed. Please try again.

File system erase failed. Please try again.

3 Error Messages

Error Messages

Error message File system format failed. Please try again. File system find partition failed. Please try again. File system create partition failed. Please try again. File system open partition failed. Please try again. File system format partition failed. Please try again. Unknown error. Please try again. Error occurs while reading the file Second part of the application update file (.jel2) is not found Please choose the correct firmware The system cannot recognize the firmware file. This may due to the file is corrupted or file type is incorrect. <Firmware type>'s firmware update failed File not found. Is the USB drive removed? Error occurs while reading <file name> The type of the firmware update file is not recognized by the system

The selected file is not recognized by the system

Error(s) occur during <Firmware type> firmware update. Do you still want to continue with the remaining update?

The type of the firmware update file is not applicable on the current system

Please press power key to reboot the instrument for the system to recover.

The parameter for <type> is out of range

Set key sound failed

configuration

Card <type> is not responding

FFT is not working

This may due to the firmware corruption caused by last incomplete firmware update. Please try to update the firmware again.

LAN is faulty or not connected

Error message

The log viewer is not installed

The system cannot find the corresponding Master DSP firmware update file. Please plug in the USB drive that contains the file and press "OK".

Please choose the correct firmware

Please download the firmware again

THIS PAGE HAS BEEN INTE	NTIONALLY LEFT BLANK.	

3

Error MessagesError Messages

	U8903A A Programi
• • • • • • • • • • • • • • • • • • • •	Appe
	Appendix Appendix Appendix
•	Appendix

U8903A	Audio	Analyze	r
Progran	ımer's	Referei	100

Appendixes
Appendix A: Waveform Frequency Range and Default Values 568
Appendix B: Units of the Measurement Function Returned Values 571
Appendix C: Waveform Parameters 575
Appendix D: Analog Waveform Amplitude Range 579
Appendix E: Relationship between Digital Waveform Parameters and Channels 580
Appendix F: Sweep Start and Stop Range 582
Appendix G: Using the IEEE-488.2 Binary Block Format 583
Appendix H: Sending HP8903B Commands to the U8903A 584
Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names 594
Appendix J: Word Length, Sampling Rate, and Multiplier for DSI Interface 597
Appendix K: Word Length, Sampling Rate, and Multiplier for Master Clock In 604

Appendix A: Waveform Frequency Range and Default Values

Analog waveforms

Waveform	Frequency range	Default
Sine	Frequency1: 5 Hz to 80 kHz	1 kHz
	Frequency2: —	0
Dual	Frequency1: 5 Hz to 80 kHz	1 kHz
	Frequency2: 5 Hz to 80 kHz	2 kHz
Variable phase	Frequency1: 5 Hz to 80 kHz	1 kHz
	Frequency2: —	0
SMPTE IMD 1:1/ 4:1/	Lower frequency: 40 Hz to 500 Hz	60 Hz
10:1	Upper frequency: 2 kHz to 60 kHz	7 kHz
DFD IEC 60118	Difference frequency: 80 Hz to 2 kHz	80 Hz
	Upper frequency: 3 kHz to 80 kHz	10 kHz
DFD IEC 60268	Difference frequency: 80 Hz to 2 kHz	80 Hz
	Center frequency: 3 kHz to 79 kHz	10 kHz
Gaussian	_	_
Rectangular	_	-
DC	_	-
Multitone	Start frequency: 5 Hz to 80 kHz	1 kHz
	Stop frequency: 5 Hz to 80 kHz	5 kHz
	Tone frequency: 5Hz to 80 kHz	Depends on spacing
Square	Frequency1: 5 Hz to 30 kHz	1 kHz
	Frequency2: —	0
Arbitrary	_	-

Digital waveforms

Waveform	Frequency range	Default
Sine	Frequency1: 2 Hz to (0.45 x sampling rate) Hz	1 kHz
Stereo	Frequency1: 2 Hz to (0.45 x sampling rate) Hz	1 kHz
Sine Burst	Frequency1: 2 Hz to (0.45 x sampling rate) Hz	1 kHz
Dual ^[1]	Frequency1: 2 Hz to (0.45 x sampling rate) Hz	1 kHz
	Frequency2: 2 Hz to (0.45 x sampling rate) Hz	2 kHz
Variable phase	Frequency1: 2 Hz to (0.45 x sampling rate) Hz	1 kHz
SMPTE IMD 1:1/ 4:1/	Lower frequency: 40 Hz to 500 Hz	60 Hz
10:1 ^[2]	Upper frequency: 2 kHz to 60 kHz	7 kHz
DFD IEC 60118 ^[3]	Difference frequency: 80 Hz to 2 kHz	80 Hz
	Upper frequency: 3 kHz to 80 kHz	10 kHz
DFD IEC 60268 ^[3]	Difference frequency: 80 Hz to 2 kHz	80 Hz
	Center frequency: 3 kHz to 79 kHz	10 kHz
Gaussian	-	_
Rectangular	-	_
Triangular	-	_
Constant	-	-
Monotonicity	-	-
Walking Zero	-	-
Walking One	-	_
Multitone	Start frequency: 2 Hz to (0.45 x sampling rate) Hz	1 kHz
	Stop frequency: 2 Hz to (0.45 x sampling rate) Hz	5 kHz
	Tone frequency: 2 Hz to (0.45 x sampling rate) Hz	Depends on spacing
Square	Frequency1: 5 Hz to (0.5 x sampling rate) Hz	1 kHz
Arbitrary	_	_

^[1] For dual waveform, the Frequency1 and Frequency2 value cannot be the same.

Appendix A: Waveform Frequency Range and Default Values

- [2] For SMPTE waveforms, the maximum for the Upper Frequency is bounded by the sampling rate. For example, at the sampling rate of 48 kHz, the maximum for the Upper Frequency is only 21.6 kHz (0.45 sampling rate) and not 60 kHz. For sampling rate of 192 kHz, the maximum for the Upper Frequency is 60 kHz.
- [3] For DFD IEC waveforms, the maximum for the Upper Frequency and Center Frequency are bounded by the sampling rate also. This means that the maximum for the Upper Frequency is either 0.45 sampling rate or 80 kHz, depends on which one is lower. The same situation is applied to the Center Frequency.

Appendix B: Units of the Measurement Function Returned Values

Analog analyzer

Measurement function	<unit></unit>	Default unit	
Frequency	Hz	Hz	
	dHz		
AC voltage	V	V	
DC voltage	đBu		
THD+N Level	dBV		
Noise level	dBm		
	W		
	dBr		
	dBg		
	X		
THD+N Ratio	dB	dв	
SINAD	ddB		
SNR	PCT (%)		
SMPTE IMD	х		
DFD IEC 60118 2nd order			
DFD IEC 60118 3rd order			
DFD IEC 60268 2nd order			
DFD IEC 60268 3rd order			
Crosstalk (channel driven)			
Crosstalk (channel measured)			
Phase	deg (°)	deg (°)	

Appendix B: Units of the Measurement Function Returned Values

Digital analyzer

Measurement function	<unit></unit>	Default unit
Frequency	Hz	Hz
	dHz	
AC voltage	V	V
DC voltage	dBu	FFS (AC voltage)
THD+N Level	dBV	dbfs (Noise level)
Noise level	dBr	
Max peak value	X	
Min peak value	FFS	
	pctFS	
	dBFS	
	LSB	
	Hex	
	Dec	
THD+N Ratio	dB	dB
SINAD	ddB	
SNR	PCT (%)	
SMPTE IMD	X	
DFD IEC 60118 2nd order		
DFD IEC 60118 3rd order		
DFD IEC 60268 2nd order		
DFD IEC 60268 3rd order		
Crosstalk (channel driven)		
Phase	deg (°)	deg (°)
Group Delay	S	s

The units can be computed using the following formulas:

<unit></unit>	Formula	Description
dHz	f – f _{ref}	f _{ref} = reference frequency
dB	$20 \times log_{10}$ (ratio)	
ddB	$(ratio) - R_{ref}$	R _{ref} = reference ratio
dBu ^[1]	$20 \times \log_{10} \left(\frac{V}{\sqrt{0.6}} \right)$	
dBV ^[1]	$20 \times log_{10}$ (V)	
dBm	$10 \times \log_{10} \left(\frac{1000 \ V^2}{Z_{ref}} \right)$	Z _{ref} = reference impedance ^[2]
dBr ^[1]	$20 \times \log_{10} \left(\frac{V}{V_{ref}} \right)$	V _{ref} = reference level ^[3]
dBg	$20 \times \log_{10} \left(\frac{V}{V_{gen}} \right)$	V _{gen} = amplitude of the generator signal for a corresponding channel
W	$\frac{V^2}{Z_{ref}}$	Z _{ref} = reference impedance ^[2]
х	V Vref	V _{ref} = reference level ^[3]
	or	
	$\frac{Ratio \text{ (in \%)}}{R_{ref} \text{ (in \%)}}$	R _{ref} = reference ratio
PCT (%)	$100 \times (ratio)$	
dBFS	$20 \times log_{10}$ (FFS)	
pctFS	100 × FFS	

Appendix B: Units of the Measurement Function Returned Values

<unit></unit>	Formula	Description
LSB	FFS x 2 ^(r-1)	r = audio resolution
Hex	$(FFS \times 2^{(r-1)}) - 1$	r = audio resolution
		The value calculated is represented in hexadecimal (base 16)
Dec	$(FFS \times 2^{(r-1)}) - 1$	r = audio resolution
		The value calculated is represented in decimal (base 10)

^[1] For digital analyzer, the dBu, dBV, and dBr calculations are derived using the reference value set at Volt/FS. $(V = FFS \times Volt/FS)$

^[2] When the Vrms measurement unit is changed to Watt or dBm, the reference impedance setting will be used for the power level calculation. The reference impedance refers to the circuitry impedance or load impedance connected to the analyzer when calculating power level.

^[3] Reference level is defined as a user-entered or a captured value from the current reading as a relative level for the subsequent measurement reading. It can be set to delta, linear, or log scale.

Appendix C: Waveform Parameters

Analog generator

Waveform	Parameter	SCPI command
Sine	Frequency	SOURce:FREQuency1
	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
	DC Offset	SOURce: VOLTage[:LEVel][:IMMediate]:OFFSet
Dual	Frequency 1	SOURce: FREQuency1
	Frequency 2	SOURce: FREQuency2
	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
	Ratio	SOURce: VOLTage: RATio
	DC Offset	SOURce: VOLTage[:LEVel][:IMMediate]:OFFSet
Variable phase	Frequency	SOURce:FREQuency1
	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
	Phase \rightarrow 1	SOURce: PHASe[: ADJust]
SMPTE IMD 1:1/	Lower Frequency	SOURce: FREQuency: LOWer
4:1/10:1	Upper Frequency	SOURce: FREQuency: UPPer
	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
	DC Offset	SOURce: VOLTage[:LEVel][:IMMediate]:OFFSet
DFD IEC 60118	Difference Frequency	SOURce: FREQuency: DIFFerence
	Upper Frequency	SOURce: FREQuency: UPPer
	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
	DC Offset	SOURce: VOLTage[:LEVel][:IMMediate]:OFFSet
DFD IEC 60268	Difference Frequency	SOURce: FREQuency: DIFFerence
	Center Frequency	SOURce: FREQuency: CENTer
	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
	DC Offset	SOURce: VOLTage[:LEVel][:IMMediate]:OFFSet
Gaussian /	Amplitude	SOURce:VOLTage[:LEVel][:IMMediate][:AMPLitude]
Rectangular	DC Offset	SOURce: VOLTage[:LEVel][:IMMediate]:OFFSet

Appendix C: Waveform Parameters

Waveform	Parameter	SCPI command
DC	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
Multitone DC offset Amplitude		SOURce: VOLTage[:LEVel][:IMMediate]:OFFSet
		SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
	Start frequency	SOURce: MULTitone: FREQuency: STARt
	Stop frequency	SOURce: MULTitone: FREQuency: STOP
	Frequency Spacing	SOURce: MULTitone: FREQuency: SPACing
	Count	SOURce: MULTitone: COUNt
	Waveform Length	SOURce: MULTitone: WLEN
	Record Length	SOURce: MULTitone: RLEN
	Crest Factor	SOURce: MULTitone: CRESt
	Clear All Tones	SOURce: MULTitone: TONE: CLEar
	Add Tone	SOURce: MULTitone: TONE: ADD
	Delete Tone	SOURce: MULTitone: TONE: DELete
	Tone Frequency	SOURce: MULTitone: TONE: FREQuency
	Tone Amplitude	SOURce: MULTitone: TONE: VOLTage
	Tone Phase	SOURce: MULTitone: TONE: PHASe
	Randomize Tone Phase	SOURce:MULTitone:TONE:PHASe:RANDomize
Square	Frequency	SOURce: FREQuency1
	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
Arbitrary	Amplitude	SOURce: VOLTage[:LEVel][:IMMediate][:AMPLitude]
	DC Offset	SOURce: VOLTage[:LEVel][:IMMediate]:OFFSet

Digital generator

Waveform	Parameter	SCPI command
Sine/Stereo/ Frequency Square Amplitude		SOURce:DIGital:FREQuency
		SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPLitude]
	DC Offset	SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFSe t

Waveform	Parameter	SCPI command
Sine burst	Frequency	SOURce:DIGital:FREQuency
	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPIitude]
	Burst On	SOURce:DIGital:SBURst:ONTime
	Period	SOURce:DIGital:SBURst:PERiod
	Low Level	SOURce:DIGital:SBURst:LOWLevel
Variable phase	Frequency	SOURce:DIGital:FREQuency
	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPIitude]
	Phase \rightarrow 1	SOURce:DIGital:PHASe[:ADJust]
Dual	Frequency 1	SOURce:DIGital:FREQuency1
	Frequency 2	SOURce:DIGital:FREQuency2
	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPIitude]
	Ratio	SOURce:DIGital:VOLTage:RATio
	DC Offset	SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFSet
SMPTE IMD 1:1/	Lower Frequency	SOURce:DIGital:FREQuency:LOWer
4:1/ 10:1	Upper Frequency	SOURce:DIGital:FREQuency:UPPer
	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPIitude]
	DC Offset	SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFSet
DFD IEC 60118	Difference Frequency	SOURce:DIGital:FREQuency:DIFFerence
	Upper Frequency	SOURce:DIGital:FREQuency:UPPer
	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPIitude]
	DC Offset	SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFS6t

Appendix C: Waveform Parameters

Waveform	Parameter	SCPI command	
DFD IEC 60268	Difference Frequency	SOURce:DIGital:FREQuency:DIFFerence	
	Center Frequency	SOURce:DIGital:FREQuency:CENTer	
	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPL itude]	
	DC Offset	SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFSe t	
Gaussian/ Rectangular/	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPL itude]	
Triangular / Pink	DC Offset	SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFSe t	
Constant	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPL itude]	
Multitone	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPL itude]	
	Start Frequency	SOURce: DIGital: MULTitone: FREQuency: STARt	
	Stop Frequency	SOURce: DIGital: MULTitone: FREQuency: STOP	
	Frequency Spacing	SOURce:DIGital:MULTitone:FREQuency:SPACing	
	Count	SOURce:DIGital:MULTitone:COUNt	
	Crest Factor	SOURce:DIGital:MULTitone:CRESt	
	Clear All Tones	SOURce:DIGital:MULTitone:TONE:CLEar	
	Add Tone	SOURce:DIGital:MULTitone:TONE:ADD	
	Delete Tone	SOURce: DIGital: MULTitone: TONE: DELete	
	Tone Frequency	SOURce:DIGital:MULTitone:TONE:FREQuency	
	Tone Amplitude	SOURce:DIGital:MULTitone:TONE:VOLTage	
	Tone Phase	SOURce:DIGital:MULTitone:TONE:PHASe	
	Randomize Tone Phase	SOURce: DIGital: MULTitone: TONE: PHASe: RANDomize	
Arbitrary	Amplitude	SOURce:DIGital:VOLTage[:LEVel][:IMMediate][:AMPL itude]	
	DC Offset	SOURce:DIGital:VOLTage[:LEVel][:IMMediate]:OFFSe t	

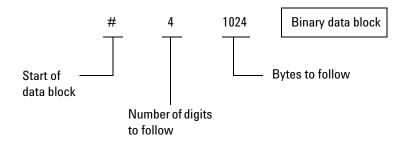
Appendix D: Analog Waveform Amplitude Range

Waveform	Amplitude range		
	Unbalanced/Common output	Balanced output	
Sine	0 to 8 Vrms (0 to 11.3 Vp)	0 to 16 Vrms (0 to 22.6 Vp)	
Dual			
Variable phase			
SMPTE IMD 1:1/ 4:1/ 10:1			
DFD IEC 60118/ 60268			
Gaussian	0 to 3.6 Vrms (0 to 11.3 Vp)	0 to 7.2 Vrms (0 to 22.6 Vp)	
Rectangular	0 to 5.09 Vrms (0 to 11.3 Vp)	0 to 10.19 Vrms (0 to 22.6 Vp)	
DC	–11.3 V to 11.3 V	–22.6 V to 22.6 V	
Multitone	0 to 11.3 Vp	0 to 22.6 Vp	
Square	0 to 11.3 Vrms (0 to 11.3 Vp)	0 to 22.6 Vrms (0 to 22.6 Vp)	
Arbitrary	0 to 11.3 Vp	0 to 22.6 Vp	

Appendix E: Relationship between Digital Waveform Parameters and Channels

Waveform	Parameter	Channel
Sine	Frequency	Channel 1 and Channel 2 are the same
	Amplitude	Channel 1 and Channel 2 can be different
	DC Offset	Channel 1 and Channel 2 are the same
Stereo	Frequency	Channel 1 and Channel 2 can be different
	Amplitude	Channel 1 and Channel 2 can be different
	DC Offset	Channel 1 and Channel 2 are the same
Square	Frequency	Channel 1 and Channel 2 are the same
	Amplitude	Channel 1 and Channel 2 can be different
	DC Offset	Channel 1 and Channel 2 are the same
Sine burst	Frequency	Channel 1 and Channel 2 are the same
	Amplitude	Channel 1 and Channel 2 can be different
	Burst On	Channel 1 and Channel 2 are the same
	Period	Channel 1 and Channel 2 are the same
	Low Level	Channel 1 and Channel 2 are the same
Variable phase	Frequency	Channel 1 and Channel 2 are the same
	Amplitude	Channel 1 and Channel 2 can be different
	Phase \rightarrow 1	Channel 1 and Channel 2 are the same
Dual	Frequency 1	Channel 1 and Channel 2 are the same
	Frequency 2	Channel 1 and Channel 2 are the same
	Amplitude	Channel 1 and Channel 2 are the same
	Ratio	Channel 1 and Channel 2 are the same
	DC Offset	Channel 1 and Channel 2 are the same
SMPTE IMD 1:1/	Lower Frequency	Channel 1 and Channel 2 are the same
4:1/10:1	Upper Frequency	Channel 1 and Channel 2 are the same
	Amplitude	Channel 1 and Channel 2 are the same
	DC Offset	Channel 1 and Channel 2 are the same

Waveform	Parameter	Channel
DFD IEC 60118	Difference Frequency	Channel 1 and Channel 2 are the same
	Upper Frequency	Channel 1 and Channel 2 are the same
	Amplitude	Channel 1 and Channel 2 are the same
	DC Offset	Channel 1 and Channel 2 are the same
DFD IEC 60268	Difference Frequency	Channel 1 and Channel 2 are the same
	Center Frequency	Channel 1 and Channel 2 are the same
	Amplitude	Channel 1 and Channel 2 are the same
	DC Offset	Channel 1 and Channel 2 are the same
Gaussian/	Amplitude	Channel 1 and Channel 2 can be different
Rectangular/ Triangular Pink	DC Offset	Channel 1 and Channel 2 are the same
	A I'. 4	Channel 1 and Channel 2 are the same
Constant	Amplitude	
Multitone	Amplitude	Channel 1 and Channel 2 can be different
	Start Frequency	Channel 1 and Channel 2 can be different
	Stop Frequency	Channel 1 and Channel 2 can be different
	Frequency Spacing	Channel 1 and Channel 2 can be different
	Count	Channel 1 and Channel 2 can be different
	Crest Factor	Channel 1 and Channel 2 can be different
	Clear All Tones	Channel 1 and Channel 2 can be different
	Add Tone	Channel 1 and Channel 2 can be different
	Delete Tone	Channel 1 and Channel 2 can be different
	Tone Frequency	Channel 1 and Channel 2 can be different
	Tone Amplitude	Channel 1 and Channel 2 can be different
	Tone Phase	Channel 1 and Channel 2 can be different
	Randomize Tone Phase	Channel 1 and Channel 2 can be different
Arbitrary	Amplitude	Channel 1 and Channel 2 can be different
	DC Offset	Channel 1 and Channel 2 are the same


Appendix F: Sweep Start and Stop Range

<sweep parameter=""></sweep>	Waveform	Sweep start range	Sweep stop range
FREQuency1	Sine	5 Hz to 80 kHz	5 Hz to 80 kHz
	Dual		
	Square	5 Hz to 30 kHz	5 Hz to 30 kHz
	SMPTE IMD 1:1/ 4:1/ 10:1	40 Hz to 500 Hz	40 Hz to 500 Hz
FREQuency2	Dual	5 Hz to 80 kHz	5 Hz to 80 kHz
	SMPTE IMD 1:1/ 4:1/ 10:1	2 kHz to 60 kHz	2 kHz to 60 kHz
	DFD IEC 60118	3 kHz to 80 kHz	3 kHz to 80 kHz
AMPLitude	Sine	 0 to 22.6 Vp (Balanced output) 0 to 11.3 Vp (Unbalanced or Common output) 	 0 to 22.6 Vp (Balanced output) 0 to 11.3 Vp (Unbalanced or Common output)
	Dual		
	Square		
	Gaussian		
	Rectangular		
	SMPTE IMD 1:1/ 4:1/ 10:1		
	DFD IEC 60118/ 60268		
	DC	 -22.6 V to 22.6 V (Balanced output) -11.3 V to 11.3 V (Unbalanced or Common output) 	 –22.6 V to 22.6 V (Balanced output) –11.3 V to 11.3 V (Unbalanced o Common output)
PHASe	Variable Phase	–180 ° to 179.99 °	-180 ° to 179.99 °
CENTer	DFD IEC 60268	3 kHz to 79 kHz	3 kHz to 79 kHz

Appendix G: Using the IEEE-488.2 Binary Block Format

In the binary block format, a block header precedes the user data.

The block header has the following format:

The U8903A represents binary data as 32-bit floating points, which are sent as four bytes. Therefore, the total number of bytes is always four times the number of data points in the user data (and must always be an even number).

Appendix H: Sending HP8903B Commands to the U8903A

Before sending the HP8903B commands to the U8903A, enable the legacy mode. Refer to "SYSTem:LEGacy:MODE" on page 58 for more information on the legacy mode.

The default channel for the legacy mode is channel 1 as the HP8903B supports only one channel. However, the U8903A provides the flexibility to switch to channel 2. Refer to "SYSTem:LEGacy:CHANnel" on page 59 for more information on the legacy mode channel.

NOTE

- You can still send SCPI commands when the legacy mode is enabled.
 When the legacy mode is disabled or enabled, the U8903A will reset.
- Concatenated HP8903B commands is allowed in the legacy mode. For example, sending AP1.2VLFR2KZ47.1SP command is equivalent to sending the AP1.2VL, FR2KZ, and 47.1SP commands separately.
- If there is an invalid HP8903B command in a concatenated HP8903B command, the whole command will be ignored. For example, AP1.2VLFFXZ47.1SP will not be executed as FFXZ is not a valid HP8903B command.

Supported HP8903B commands list

The supported versions of the HP8903B commands are versions R2.1.4.0 and above. The list of supported HP8903B commands are grouped into five different groups.

Generator commands

Command syntax	Description
AP <voltage><unit></unit></voltage>	Sets the amplitude level of the source signal. The supported units are as follows.
	• VL – Vrms
	• MV – mVrms
	• DV – dBV (= voltage – 2.218 dB)
	Examples:
	AP1.5VL \rightarrow sets the amplitude to 1.5 Vrms
	AP0DV \rightarrow sets the voltage to $-2.218~\text{dB}$
FR <frequency><unit></unit></frequency>	Sets the frequency of the source signal. The supported units are as follows.
	• HZ
	• KZ where KZ = kHz
	Example:
	FR3.2KZ \rightarrow sets the frequency to 3.2 kHz
AN <amplitude><unit></unit></amplitude>	Sets the step value to increase or decrease the amplitude. The supported units are as follows.
	• VL – Vrms
	• MV – mVrms
	• DV – dBV (= voltage – 2.218 dB)
FN <frequency><unit></unit></frequency>	Sets the step value to increase or decrease the frequency. The supported units are as follows.
	• HZ
	KZ where KZ = kHz

Appendix H: Sending HP8903B Commands to the U8903A

Command syntax	Description
UP, DN	UP increases the amplitude or frequency to the step value set by the AN or FN commands. DN increases the amplitude or frequency to the step value set by the AN or FN commands.
	The parameter to increase or decrease depends on the last AN or FN command.
	Examples:
	Current amplitude = 0 Vrms, Frequency = 1 kHz
	AN0.5VL
	$\text{UP} \rightarrow \text{increases}$ the amplitude to 0.5 Vrms
	$\text{UP} \rightarrow \text{increases}$ the amplitude to 1 Vrms
	$\text{DN} \rightarrow \text{decreases}$ the amplitude to 0.5 Vrms
	FN1KZ
	$\text{UP} \rightarrow \text{increases}$ the frequency to 2 kHz
47.0SP	Sets the impedance to 50 Ω and 600 Ω respectively.
47.1SP	
10.0SP	Sets the display mode to the analyzer-generator view.
	Refer to "DISPlay[:WINDow]:VIEW" on page 311 for more information on the display mode view.

Measurement commands

Command syntax	Description
T0	T0 turns on the auto query mode and T1 turns off the auto query mode.
T1	T0 and T1 cannot be used in a concatenated command.
T2	Initiates the analyzer and returns the measurement readings. T3 returns the
T3	measurement readings with a delay of 300 ms.
	This command returns the measurement readings of only one function which is determined by the RR and RL commands.

Command syntax	Description
RR[?] or 20.0SP	Determines the function type for the measurement readings return by the T2 and T3 commands.
RL[?] or 20.1SP	RR[?] or 20.0SP will set the T2 or T3 command to return the measurement readings of function 2.
	RL[?] or 20.1SP will set the T2 or T3 command to return the measurement readings of function 1.
	RR[?] is equivalent to FETC? FUNC2, (@1).
	RL[?] is equivalent to FETC? FUNC1, (@1).
16.0SP	Determines the resolution of SINAD and SNR measurement in dB.
16.1SP	16.0SP will set the resolution to 0.01 dB for values more than 25 dB and set the resolution to 0.5 dB for values less than 25 dB.
	16.1SP will set the resolution to 0.01 dB for all range of values.
	16.0SP and 16.1SP are effective to RR, T2 and T3 (if RR is sent), and GUI.
	Sending FETC? FUNC1, (@1) will still return in the 6-digit scientific format as shown in "FETCh[:SCALar]?" on page 403.

Appendix H: Sending HP8903B Commands to the U8903A

Analyzer commands

Command syntax	Description
M1	Sets the measurement of function 2.
M2	$M1 \rightarrow Vac$
M3	$M2 \rightarrow SINAD$
S1	$M3 \rightarrow THD$ Ratio
S2	S1 o DC
S3	$S1 \rightarrow SNR$
	S1 o THD Level
AU	Sets the input range of the analyzer.
1.0SP	AU, 1.0SP, 2.0SP \rightarrow enable auto range
1.3SP	9.0SP $ ightarrow$ disable auto range
1.4SP	$1.3\text{SP} \rightarrow 140 \text{ V}$
1.5SP	$1.4SP, 2.2SP \rightarrow 100V$
1.6SP	1.5SP, 1.6SP \rightarrow 50V
1.7SP	1.7SP, 2.3SP \rightarrow 25V
1.8SP	1.8SP, 1.9SP \rightarrow 12.8V
1.9SP	1.10SP, 2.4SP \rightarrow 6.4V
1.10SP	1.11SP, 1.12SP \rightarrow 3.2V
1.11SP	$1.13SP \rightarrow 1.6V$
1.12SP	1.14SP, 1.15SP \rightarrow 0.8V
1.13SP	1.6SP, 1.17SP, 1.18SP, 1.19SP $ ightarrow$ 0.4V
1.14SP	
1.15SP	
1.16SP	
1.17SP	
1.18SP	
1.19SP	
2.0SP	
2.2SP	
2.3SP	
2.4SP	
9.0SP	

Command syntax	Description
A0	Sets the input detector.
5.0SP	A0, 5.0SP, 5.1SP \rightarrow RMS
5.1SP	$5.7SP \rightarrow QPK$
5.7SP	
Н0	Sets the filters of the U8903A.
H1	${ m H0} ightarrow { m turns}$ off the left or right plug-in filter
H2 L0	H1, H2 \rightarrow sets the left and right plug-in filters to high pass filter or weighting filter respectively
L1	$L0 \rightarrow turns$ off the low pass filter
L2	$L1 \rightarrow$ sets the low pass filter to 30 kHz
	$\text{L2} \to \text{sets}$ the low pass filter to 80 kHz (this filter is loaded as a custom filter as there is no predefined 80 kHz low pass filter in the U8903A)
	Configure the left and right filters before sending the H1 and H2 commands. Only one of the filters can be turned on at a time. Refer to "SENSe:FILTer:LEFT" on page 233 and "SENSe:FILTer:RIGHt" on page 235 for more information on the filters.
	Example:
	Configure the left and right filters.
	SENS:FILT:LEFT HP400 \rightarrow sets the left filter to high pass filter with 400 Hz cutoff frequency
	SENS:FILT:RIGH CMES \rightarrow sets the right filter to C-Message filter
	H1 → enables the HP400 filter
	$\mbox{H2} \rightarrow \mbox{enables}$ the HP400 filter and disables the HP400 filter
LN	Changes the measurement result unit to linear unit.
	Measurement unit for AC, DC, and THD Level will change to V or \boldsymbol{x} depending on the type of reference mode.
	Measurement unit for SINAD, SNR, and THD Ratio will change to $\%$ only when the reference mode is not in Delta mode.
	Example:
	$\text{LN} \to \text{measurement}$ unit for AC, DC, and THD Level will change to x if the reference mode is in Log mode

Appendix H: Sending HP8903B Commands to the U8903A

Command syntax	Description
LG	Changes the measurement result unit to logarithmic unit.
	Measurement unit for AC, DC, and THD Level will change to dBr or dBm depending on the type of reference mode .
	Measurement unit for SINAD, SNR, and THD Ratio will change to ddB.
	Example:
	$\text{LG} \to \text{measurement}$ unit for AC, DC , and THD Level will change to dBr if the reference mode is in Linear mode
R0	Disables the ratio mode.
	Measurement unit for AC, DC, and THD Level will change to dBm or V depending on the previous measurement unit.
	Measurement unit for SINAD, SNR, and THD Ratio will change to dB if the previous measurement unit is in ddB.
	Example:
	$\text{RO} \to \text{measurement}$ unit for AC, DC, and THD Level will change to dBm if the previous measurement unit is in dBr
<value>R1</value>	Compares the measurement result to a reference value. If the <value> is not specified, the previous measurement will be used.</value>
	Measurement unit for AC, DC, and THD Level will change to dBr or x depending on the previous measurement unit before the ratio mode is disabled.
	Measurement unit for SINAD, SNR, and THD Ratio will change to ddB if the previous measurement unit is in dB.
	Example:
	Measurement unit = x
	$R0 \rightarrow measurement$ unit will change to V
	R1 \rightarrow measurement unit will change to x
11.0SP	Enables the ratio mode with the previous reference value.
	Equivalent to R1 but without taking the measurement before switching the measurement unit.

Command syntax	Description
11.1SP	Reads the reference type.
19.0SP 19.NNNSP	Sets the reference impedance and changes the value to W (supported functions only)
	19.0SP $ ightarrow$ sets the reference impedance to 8 Ω
	19.NNNSP \rightarrow sets the reference impedance to a specific value
	NNN:1 ~ 999 Ω
	Example:
	$19.8SP \rightarrow equivalent$ to the 19.0SP command

Appendix H: Sending HP8903B Commands to the U8903A

Sweep commands

Command syntax	Description
FA <start frequency=""><unit></unit></start>	Sets the start stop frequency. The supported units are as follows.
FA <stop frequency=""><unit></unit></stop>	HZKZ where KZ = kHz
	Example:
	FA100Hz \rightarrow sets the start frequency to 100 Hz
17.0SP	Sets the sweep resolution. Each command determines the number of
17.1SP	points over decade.
17.2SP	$17.1SP \rightarrow 1/dec$
17.3SP	$17.2SP \rightarrow 2/dec$
17.4SP	$17.3SP \rightarrow 5/dec$
17.5SP	17.0SP & 17.4SP \rightarrow 10/dec
17.6SP	$17.5SP \rightarrow 20/dec$
17.7SP	$17.6SP \rightarrow 50/dec$
17.8SP	$17.7SP \rightarrow 100/dec$
17.9SP	$17.8SP \rightarrow 200/dec$
	$17.9SP \rightarrow 500/dec$
	The total number of points is computed using the following formula.
	Point Count = Sweep Range × Points/Decade
	where Sweep Range (in decades) = log_{10} (Stop Frequency/Start Frequency)
	Example:
	Start Frequency = 30 Hz, Stop Frequency = 30 kHz
	17.3SP → 15 points
W1	Initiates the frequency sweep.
W0	Aborts the frequency sweep.

System commands

Command syntax	Description
21.1SP	Reads the GPIB address.
22.1SP	Equivalent to the *SRE 16 command. Refer to "*SRE" on page 33 for more information.
22.2SP	Equivalent to the *ESE 32; SRE 32 command. Refer to "*ESE" on page 29 and "*SRE" on page 33 for more information.
22.4SP	Equivalent to the *SRE 4 command. Refer to "*SRE" on page 33 for more information.

Example of usage

Amplitude = 5 Vrms

Frequency = 500 Hz

Measurement function = SINAD

Bandwidth = High

In order to set to the settings above, the following commands are sent.

1 SYST:LEG:MODE ON

2 INP:BAND HIGH

3 AP5VLFR0.5KZM2

In order to increment the amplitude by three times with step value of 100 mVrms, the following command is sent.

AN100MVUPUPUP

Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names

Field Name	Field Values
Mode	Consumer or Professional
Audio Mode	Non Linear PCM or Linear PCM
Consumer	
Copyright	Non Copyright or Copyright
Emphasis	No pre-emphasis, 50/15μs,Reserved 1, or Reserved 2
Channel Mode	0 to 3
Category Code	General, Laser Optical, D/D Converter, Magnetic, Digital Broadcast 1, Digital Broadcast 2, Musical Instrument, ADC Non Copyright, Solid State Memory, ADC Copyright, Experimental, Reserved 1, or Reserved 2
Source Number	0 to 15
Channel Number	0 to 15
Sample Freq	Not indicated, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz, or 768kHz
Clock Accuracy	Level 1, Level 2, Level 3, or Reserved
Max Word Length	20 bits or 24 bits
Word Length	For Max Word Length = 20 bits,
	Not indicated, 16 bits, 17 bits, 18 bits, 19 bits, or 20 bits
	For Max Word Length = 24 bits,
	Not indicated, 20 bits, 21 bits, 22 bits, 23 bits, or 24 bits
Original Sample Freq	Not indicated, 8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz, Reserved 1, or Reserved 2
CGMS-A	Copying Permitted, Condition Not Used, One Generation Copy, or Copying Denied
Professional	

Field Name	Field Values
Emphasis	Not indicated, No pre-emphasis, 50/15us, or CCITT J.17
Sample Freq	Not indicated, 22.05kHz, 24kHz, 32 kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, or 192kHz
Sample Freq Scaling	Disable or Enable
Channel Mode	Not indicated, 2-channel, Single Channel, Primary-Secondary, Stereo, Reserved 1, Reserved 2, Mono Double Rate, Left Double Rate, Right Double Rate, or Multichannel
User Bits	Not indicated, 192-bit block, Reserved for AES18, User defined, Reserved for Metadata, or As in IEC60958-3
Auxiliary Bits	20-bit not defined, 24-bit main audio, 20-bit single, or Reserved
Word Length	If Auxiliary Bits = 24-bit main audio,
	Not indicated, 20 bits, 21 bits, 22 bits, 23 bits, 24 bits
	If Auxiliary Bits = 20-bit not defined, 20-bit single, or Reserved, Not indicated, 16 bits, 17 bits, 18 bits, 19 bits, or 20 bits
Alignment Level	Not indicated, -18.06dBFS, -20dBFS, or Reserved
Multichannel Status	Undefined or Defined
Multichannel Mode	Mode 0, Mode 1, Mode 2, Mode 3, or User Defined
	Note: The Multichannel Mode is only applicable when the Multichannel Status is set to Defined.
Channel Number	If Multichannel Status = Defined,
	1 to 16
	If Multichannel Status = Undefined.
	1 to 128
Reference Signal	Not a ref. signal, Grade 1, Grade 2, or Reserved
Channel Origin	0 to 4 (alphanumeric digit)
Channel Destination	0 to 4 (alphanumeric digit)
Local Address	0 to 2 ³² -1
Time-of-day	0 to 2 ³² -1

Appendix I: AES3/SPDIF Interface Channel Status Bits Field Names

Field Name	Field Values
0-5 Reliable	False or True
6-13 Reliable	False or True
14-17 Reliable	False or True
18-21 Reliable	False or True
CRCC	Value between 0 to 255 (query only)

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
400	8	128
400	9	72, 144
400	10	80, 160
400	11	88, 176
400	12	96, 192
400	13	104, 208
400	14	112, 224
400	15	120, 240
400	16	64, 128
400	17	68, 136
400	18	72, 144
400	19	76, 152
400	20	80, 160
400	21	84, 168
400	22	88, 176
400	23	92, 184
400	24	96, 192
400	25	100, 200
400	26	104, 208
400	27	108, 216
400	28	112, 224
400	29	116, 232
400	30	120, 240

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
400	31	124, 248
400	32	128
200	8	128, 256
200	9	72, 144, 288
200	10	80, 160, 320
200	11	88, 176, 352
200	12	96, 192, 384
200	13	104, 208, 416
200	14	112, 224, 448
200	15	120, 240, 480
200	16	64, 128, 256
200	17	68, 136, 272
200	18	72, 144, 288
200	19	76, 152, 304
200	20	80, 160, 320
200	21	84, 168, 336
200	22	88, 176, 352
200	23	92, 184, 368
200	24	96, 192, 384
200	25	100, 200, 400
200	26	104, 208, 416
200	27	108, 216, 432
200	28	112, 224, 448
200	29	116, 232, 464
200	30	120, 240, 480
200	31	124, 248, 496

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
200	32	128, 256
100	8	128, 256, 512
100	9	72, 144, 288, 576
100	10	80, 160, 320, 640
100	11	88, 176, 352, 704
100	12	96, 192, 384, 768
100	13	104, 208, 416, 832
100	14	112, 224, 448, 896
100	15	120, 240, 480, 960
100	16	64, 128, 256, 512
100	17	68, 136, 272, 544
100	18	72, 144, 288, 576
100	19	76, 152, 304, 608
100	20	80, 160, 320, 640
100	21	84, 168, 336, 672
100	22	88, 176, 352, 704
100	23	92, 184, 368, 736
100	24	96, 192, 384, 768
100	25	100, 200, 400, 800
100	26	104, 208, 416, 832
100	27	108, 216, 432, 864
100	28	112, 224, 448, 896
100	29	116, 232, 464, 928
100	30	120, 240, 480, 960
100	31	124, 248, 496, 992
100	32	128, 256, 512

≤ Sampling rate (kHz) ^[1]	Word length	Multiplier
50	8	128, 256, 512, 1024
50	9	72, 144, 288, 576
50	10	80, 160, 320, 640
50	11	88, 176, 352, 704
50	12	96, 192, 384, 768
50	13	104, 208, 416, 832
50	14	112, 224, 448, 896
50	15	120, 240, 480, 960
50	16	64, 128, 256, 512
50	17	68, 136, 272, 544
50	18	72, 144, 288, 576
50	19	76, 152, 304, 608
50	20	80, 160, 320, 640
50	21	84, 168, 336, 672
50	22	88, 176, 352, 704
50	23	92, 184, 368, 736
50	24	96, 192, 384, 768
50	25	100, 200, 400, 800
50	26	104, 208, 416, 832
50	27	108, 216, 432, 864
50	28	112, 224, 448, 896
50	29	116, 232, 464, 928
50	30	120, 240, 480, 960
50	31	124, 248, 496, 992
50	32	128, 256, 512, 1024
25	8	128, 256, 512, 1024

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
25	9	72, 144, 288, 576
25	10	80, 160, 320, 640
25	11	88, 176, 352, 704
25	12	96, 192, 384, 768
25	13	104, 208, 416, 832
25	14	112, 224, 448, 896
25	15	120, 240, 480, 960
25	16	64, 128, 256, 512
25	17	68, 136, 272, 544
25	18	72, 144, 288, 576
25	19	76, 152, 304, 608
25	20	80, 160, 320, 640
25	21	84, 168, 336, 672
25	22	88, 176, 352, 704
25	23	92, 184, 368, 736
25	24	96, 192, 384, 768
25	25	100, 200, 400, 800
25	26	104, 208, 416, 832
25	27	108, 216, 432, 864
25	28	112, 224, 448, 896
25	29	116, 232, 464, 928
25	30	120, 240, 480, 960
25	31	124, 248, 496, 992
25	32	128, 256, 512, 1024
12.5	8	128, 256, 512, 1024
12.5	9	72, 144, 288, 576

≤ Sampling rate (kHz) ^[1]	Word length	Multiplier
12.5	10	80, 160, 320, 640
12.5	11	88, 176, 352, 704
12.5	12	96, 192, 384, 768
12.5	13	104, 208, 416, 832
12.5	14	112, 224, 448, 896
12.5	15	120, 240, 480, 960
12.5	16	64, 128, 256, 512
12.5	17	68, 136, 272, 544
12.5	18	72, 144, 288, 576
12.5	19	76, 152, 304, 608
12.5	20	80, 160, 320, 640
12.5	21	84, 168, 336, 672
12.5	22	88, 176, 352, 704
12.5	23	92, 184, 368, 736
12.5	24	96, 192, 384, 768
12.5	25	100, 200, 400, 800
12.5	26	104, 208, 416, 832
12.5	27	108, 216, 432, 864
12.5	28	112, 224, 448, 896
12.5	29	116, 232, 464, 928
12.5	30	120, 240, 480, 960
12.5	31	124, 248, 496, 992
12.5	32	128, 256, 512, 1024
6.75	8	128, 256, 512, 1024
6.75	9	72, 144, 288, 576
6.75	10	80, 160, 320, 640

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
6.75	11	88, 176, 352, 704
6.75	12	96, 192, 384, 768
6.75	13	104, 208, 416, 832
6.75	14	112, 224, 448, 896
6.75	15	120, 240, 480, 960
6.75	16	128, 256, 512
6.75	17	136, 272, 544
6.75	18	144, 288, 576
6.75	19	152, 304, 608
6.75	20	160, 320, 640
6.75	21	168, 336, 672
6.75	22	176, 352, 704
6.75	23	184, 368, 736
6.75	24	192, 384, 768
6.75	25	200, 400, 800
6.75	26	208, 416, 832
6.75	27	216, 432, 864
6.75	28	224, 448, 896
6.75	29	116, 232, 464, 928
6.75	30	120, 240, 480, 960
6.75	31	124, 248, 496, 992
6.75	32	128, 256, 512, 1024

^[1] For sampling rate less than or equal to.

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
400	8	64, 128
400	9	72, 144
400	10	80, 160
400	11	88
400	12	96
400	13	104
400	14	112
400	15	120
400	16	64, 128
400	17	68, 136
400	18	72, 144
400	19	76
400	20	80
400	21	84
400	22	88
400	23	92
400	24	96, 192
400	25	100
400	26	104
400	27	108
400	28	112
400	29	116
400	30	120

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
400	31	124
400	32	128
200	8	64, 128, 256
200	9	72, 144, 288
200	10	80, 160
200	11	88, 176
200	12	96, 192
200	13	104, 208
200	14	112, 224
200	15	120, 240
200	16	64, 128, 256
200	17	68, 136, 272
200	18	72, 144, 288
200	19	76, 152
200	20	80, 160
200	21	84, 168
200	22	88, 176
200	23	92, 184
200	24	96, 192
200	25	100, 200
200	26	104, 208
200	27	108, 216
200	28	112, 224
200	29	116, 232
200	30	120, 240
200	31	124, 248

≤ Sampling rate (kHz) ^[1]	Word length	Multiplier
200	32	128, 256
100	8	64, 128, 256, 512
100	9	72, 144, 288, 576
100	10	80, 160, 320
100	11	88, 176, 352
100	12	96, 192, 384
100	13	104, 208, 416
100	14	112, 224, 448
100	15	120, 240, 480
100	16	64, 128, 256, 512
100	17	68, 136, 272, 544
100	18	72, 144, 288, 576
100	19	76, 152, 304
100	20	80, 160, 320
100	21	84, 168, 336
100	22	88, 176, 352
100	23	92, 184, 368
100	24	96, 192, 384
100	25	100, 200, 400
100	26	104, 208, 416
100	27	108, 216, 432
100	28	112, 224, 448
100	29	116, 232, 464
100	30	120, 240, 480
100	31	124, 248, 496
100	32	128, 256, 512
		·

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
50	8	64, 128, 256, 512
50	9	72, 144, 288, 576
50	10	80, 160, 320, 640
50	11	88, 176, 352, 704
50	12	95, 192, 384, 768
50	13	104, 208, 416, 832
50	14	112, 224, 448, 896
50	15	120, 240, 480, 960
50	16	64, 128, 256, 512
50	17	68, 136, 272, 544
50	18	72, 144, 288, 576
50	19	76, 152, 304, 608
50	20	80, 160, 320, 640
50	21	84, 168, 336, 672
50	22	88, 176, 352, 704
50	23	92, 184, 368, 736
50	24	96, 192, 384, 768
50	25	100, 200, 400, 800
50	26	104, 208, 416, 832
50	27	108, 216, 432, 864
50	28	112, 224, 448, 896
50	29	116, 232, 464, 928
50	30	120, 240, 480, 960
50	31	124, 248, 496, 992
50	32	128, 256, 512
25	8	64, 128, 256, 512

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
25	9	72, 144, 288, 576
25	10	80, 160, 320, 640
25	11	88, 176, 352, 704
25	12	96, 192, 384, 768
25	13	104, 208, 416, 832
25	14	112, 224, 448, 896
25	15	120, 240, 480, 960
25	16	64, 128, 256, 512
25	17	136, 272, 544
25	18	72, 144, 288, 576
25	19	152, 304, 608
25	20	80, 160, 320, 640
25	21	168, 336, 672
25	22	88, 176, 352, 704
25	23	184, 368, 736
25	24	96, 192, 384, 768
25	25	200, 400, 800
25	26	104, 208, 416, 832
25	27	216, 432, 864
25	28	112, 224, 448, 896
25	29	232, 464, 928
25	30	120, 240, 480, 960
25	31	248, 496, 992
25	32	128, 256, 512
12.5	8	64, 128, 256, 512
12.5	9	144, 288, 576

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
12.5	10	80, 160, 320, 640
12.5	11	176, 352, 704
12.5	12	96, 192, 384, 768
12.5	13	208, 416, 832
12.5	14	112, 224, 448, 896
12.5	15	240, 480, 960
12.5	16	64, 128, 256, 512
12.5	17	272, 544
12.5	18	144, 288, 576
12.5	19	304, 608
12.5	20	160, 320, 640
12.5	21	336, 672
12.5	22	176, 352, 704
12.5	23	368, 736
12.5	24	192, 384, 768
12.5	25	400, 800
12.5	26	208, 416, 832
12.5	27	432, 864
12.5	28	224, 448, 896
12.5	29	464, 928
12.5	30	240, 480, 960
12.5	31	496, 992
12.5	32	128, 256, 512
6.75	8	64, 128, 256, 512
6.75	9	288, 576
6.75	10	160, 320, 640

\leq Sampling rate (kHz) ^[1]	Word length	Multiplier
6.75	11	352, 704
6.75	12	192, 384, 768
6.75	13	416, 832
6.75	14	224, 448, 896
6.75	15	480, 960
6.75	16	64, 128, 256, 512
6.75	17	544
6.75	18	288, 576
6.75	19	608
6.75	20	320, 640
6.75	21	672
6.75	22	352, 704
6.75	23	736
6.75	24	384, 768
6.75	25	800
6.75	26	416, 832
6.75	27	864
6.75	28	448, 896
6.75	29	928
6.75	30	480, 960
6.75	31	992
6.75	32	128, 256, 512

^[1] For sampling rate less than or equal to.

www.agilent.com

Contact us

To obtain service, warranty, or technical assistance, contact us at the following phone or fax numbers:

United States:

(tel) 800 829 4444 (fax) 800 829 4433

Canada:

(tel) 877 894 4414 (fax) 800 746 4866

China:

(tel) 800 810 0189 (fax) 800 820 2816

Europe:

(tel) 31 20 547 2111

Japan:

(tel) 0120 (421) 345 (fax) 0120 (421) 678

Korea:

(tel) (080) 769 0800 (fax) (080) 769 0900

Latin America: (tel) (305) 269 7500

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6755 0042

Or visit Agilent World Wide Web at: www.agilent.com/find/assist

Product specifications and descriptions in this document are subject to change without notice. Always refer to the Agilent Web site for the latest revision.

© Agilent Technologies, Inc., 2009–2013

Ninth Edition, May 22, 2013 U8903-90027

